Arid

浏览/检索结果: 共5条,第1-5条 帮助

已选(0)清除 条数/页:   排序方式:
A deep learning-based hybrid approach for multi-time-ahead streamflow prediction in an arid region of Northwest China 期刊论文
发表期刊: HYDROLOGY RESEARCH. 出版年: 2024, 卷号: 55, 期号: 2, 页码: 180-204
作者:  Fang, J. J.;  Yang, Linshan;  Wen, Xiaohu;  Li, Weide;  Yu, Haijiao;  Zhou, Ting
收藏  |  浏览/下载:31/0  |  提交时间:2024/10/04
convolutional neural network (CNN)  long short-term memory (LSTM)  Shule River  streamflow prediction  Transformer  
Forecasting the potential of reclaimed water using signal decomposition and deep learning 期刊论文
发表期刊: JOURNAL OF WATER PROCESS ENGINEERING. 出版年: 2024, 卷号: 65
作者:  Chen, Yinglong;  Zhang, Hongling;  Peng, Jingkai;  Ma, Shilong;  Xu, Tengsheng;  Tang, Lian
收藏  |  浏览/下载:21/0  |  提交时间:2024/10/04
Complete ensemble empirical mode decompositionwith adaptivenoise(CEEMDAN)  Deep learning  Long short-term memory neural network (LSTM)  Convolutional neural network (CNN)  Reclaimed water volumes forecasting  
Forecast of short-term daily reference evapotranspiration under limited meteorological variables using a hybrid bi-directional long short-term memory model (Bi-LSTM) 期刊论文
发表期刊: AGRICULTURAL WATER MANAGEMENT. 出版年: 2020, 卷号: 242
作者:  Yin, Juan;  Deng, Zhen;  Ines, Amor V. M.;  Wu, Junbin;  Rasu, Eeswaran
收藏  |  浏览/下载:68/0  |  提交时间:2021/01/07
Artificial neural network  Hybrid Bi-LSTM  Penman-Monteith (PM) method  Reference evapotranspiration (ET0)  Sunshine duration  Temperature  
Multi-step ahead forecasting of global solar radiation for arid zones using deep learning 会议论文
会议名称: International Conference on Computational Intelligence and Data Science (ICCIDS). 会议地点: NorthCap Univ, Gurugram, INDIA. 会议日期: SEP 06-07, 2019
作者:  Chandola, Deeksha;  Gupta, Harsh;  Tikkiwal, Vinay Anand;  Bohra, Manoj Kumar
收藏  |  浏览/下载:18/0  |  提交时间:2021/01/08
Solar irradiance  Artificial neural network  LSTM  Forecasting  RMSE  
基于LSTM神经网络的青藏高原月降水量预测 期刊论文
发表期刊: 地球信息科学学报. 出版年: 2020, 卷号: 22, 期号: 8, 页码: 1617-1629
作者:  刘新;  赵宁;  郭金运;  郭斌
收藏  |  浏览/下载:21/0  |  提交时间:2022/03/18
LSTM neural network  precipitation  prediction  RNN neural network  Qinghai-Tibet Plateau  time series  machine learning