Arid
基于LSTM神经网络的青藏高原月降水量预测
其他题名Prediction of Monthly Precipitation over the Tibetan Plateau based on LSTM Neural Network
刘新; 赵宁; 郭金运; 郭斌
来源期刊地球信息科学学报
ISSN1560-8999
出版年2020
卷号22期号:8页码:1617-1629
中文摘要青藏高原的降水量预测不仅为该地区水资源合理规划利用提供依据,同时对中国及周边国家气候变化研究有着重要的意义。论文利用1990-2016年青藏高原降水量数据,采用长短期记忆神经网络(LSTM)对青藏高原月降水量进行预测,主要包括:①使用青藏高原86个测站1990-2013年的月降水资料,预测各个测站2014-2016年的月降水量,并与传统的RNN、NAR、SSA和ARIMA预测模型相比,平均决定系数R~2分别提高了0.07、0.15、0.13和0.36,均方根误差(RMSE)和平均绝对误差(MAE)表现更低;②分析了降水量预测精度的空间分布特征,将各模型的R~2在青藏高原地区内插值,分析R~2的空间分布特征,发现所有模型降雨稀少的干旱地区和降雨多的湿润地区R~2较低,在气候稳定、降水规律性明显的地区R~2较高,且LSTM模型R~2≥0.6的空间范围远大于传统模型;③分析了不同预测长度对各模型预测精度的影响,发现所有模型会随着预测长度增加而预测精度降低,但在不同的预测长度下LSTM预测的RMSE值都低于其他模型。
英文摘要Precipitation prediction on the Qinghai-Tibet Plateau not only provides a basis for rational planning and utilization of water resources, but also has significance for climate change research in China and neighboring countries. In this paper, the Long Short Term Memory neural network (LSTM) was used to predict the monthly precipitation over the Qinghai-Tibet Plateau using data from 1990 to 2016. Firstly, the monthly precipitation data of 86 stations in the Qinghai-Tibet Plateau from 1990 to 2013 were used to predict the monthly precipitation of each station from 2014 to 2016. Comparing with the traditional RNN, NAR, SSA, and ARIMA prediction models, LSTM increased the average coefficient of determination (R~2) by 0.07, 0.15, 0.13, and 0.36, respectively. Simultaneously, LSTM had lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Among them, the observation of station 56106 showed that the LSTM model predicted the period more accurately with less displacement deviation, and that the prediction of the valley between July and September was more accurate with R~2 reaching 0.87. Secondly, the spatial distribution characteristics of precipitation prediction accuracy were analyzed. The R~2 of each model was interpolated in the Qinghai-Tibet Plateau, and the spatial distribution characteristics of R~2 were analyzed. All the drought areas with rare rainfall and the wet areas with heavy rainfall were of lower R~2, while the areas with stable climate and obvious precipitation were of higher R~2. Areas of R~2 over 0.6 were much larger when using the LSTM model than the traditional model. Finally, influence of different prediction lengths on the prediction accuracy was analyzed for each model. All models showed decreased prediction accuracy as the prediction length increased, yet the RMSE values predicted by LSTM were lower than by other models with the varying prediction lengths.
中文关键词长短期记忆网络 ; 降水量 ; 预测 ; 循环神经网络 ; 青藏高原 ; 时间序列 ; 机器学习
英文关键词LSTM neural network precipitation prediction RNN neural network Qinghai-Tibet Plateau time series machine learning
类型Article
语种中文
收录类别CSCD
WOS类目Meteorology & Atmospheric Sciences
CSCD记录号CSCD:6785748
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/379007
作者单位刘新, 山东科技大学测绘科学与工程学院, 青岛, 山东 266590, 中国.; 赵宁, 山东科技大学测绘科学与工程学院, 青岛, 山东 266590, 中国.; 郭金运, 山东科技大学测绘科学与工程学院, 青岛, 山东 266590, 中国.; 郭斌, 山东科技大学测绘科学与工程学院, 青岛, 山东 266590, 中国.
推荐引用方式
GB/T 7714
刘新,赵宁,郭金运,等. 基于LSTM神经网络的青藏高原月降水量预测[J],2020,22(8):1617-1629.
APA 刘新,赵宁,郭金运,&郭斌.(2020).基于LSTM神经网络的青藏高原月降水量预测.地球信息科学学报,22(8),1617-1629.
MLA 刘新,et al."基于LSTM神经网络的青藏高原月降水量预测".地球信息科学学报 22.8(2020):1617-1629.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘新]的文章
[赵宁]的文章
[郭金运]的文章
百度学术
百度学术中相似的文章
[刘新]的文章
[赵宁]的文章
[郭金运]的文章
必应学术
必应学术中相似的文章
[刘新]的文章
[赵宁]的文章
[郭金运]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。