Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.procs.2020.03.329 |
Multi-step ahead forecasting of global solar radiation for arid zones using deep learning | |
Chandola, Deeksha; Gupta, Harsh; Tikkiwal, Vinay Anand; Bohra, Manoj Kumar | |
通讯作者 | Chandola, D (corresponding author), Jaypee Inst Informat Technol, Dept Elect & Commun Engn, Noida 201304, India. |
会议名称 | International Conference on Computational Intelligence and Data Science (ICCIDS) |
会议日期 | SEP 06-07, 2019 |
会议地点 | NorthCap Univ, Gurugram, INDIA |
英文摘要 | Solar irradiance is fluctuating and interutittent in nature. In order to optimally farness solar energy, this variability needs to be accounted for. Forecasting solar radiation proves to be helpful in optimal design, and operation of solar energy based systems. This paper presents a solar irradiance forecasting scheme for multi-horizon forecasting of solar radiation considering 3/6/24 hours ahead scenarios. The proposed model uses long short tett!t memory network, considering the dependence between hours of the same day along with other variables such as: direct horizontal irradiance, direct notinal irradiance, relative humidity, dew point, temperature, wind speed, and wind direction. Solar radiations for four different locations of the Thar desert region have been forecasted. The model is optimized in tent's of number of neurons and is evaluated using standard statistical indicators: RMSE and MAPE. RMSE for four different locations varied in the range of 0.099 to 0.181, along with MAPE values, which range from 6.79% to 10.47%. Low values of RMSE and MAPE indicate the efficacy of the proposed model. (C) 2020 The Authors. Published by Elsevier B.V. |
英文关键词 | Solar irradiance Artificial neural network LSTM Forecasting RMSE |
来源出版物 | INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE |
ISSN | 1877-0509 |
出版年 | 2020 |
卷号 | 167 |
页码 | 626-635 |
出版者 | ELSEVIER SCIENCE BV |
类型 | Proceedings Paper |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | CPCI-S |
WOS记录号 | WOS:000582710700066 |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods |
WOS研究方向 | Computer Science |
资源类型 | 会议论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/337085 |
作者单位 | [Chandola, Deeksha; Tikkiwal, Vinay Anand] Jaypee Inst Informat Technol, Dept Elect & Commun Engn, Noida 201304, India; [Gupta, Harsh] Jaypee Inst Informat Technol, Noida 201304, India; [Bohra, Manoj Kumar] Manipal Univ, Sch Comp & Informat Technol, Jaipur 30300, Rajasthan, India |
推荐引用方式 GB/T 7714 | Chandola, Deeksha,Gupta, Harsh,Tikkiwal, Vinay Anand,et al. Multi-step ahead forecasting of global solar radiation for arid zones using deep learning[C]:ELSEVIER SCIENCE BV,2020:626-635. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。