Arid
DOI10.1016/j.procs.2020.03.329
Multi-step ahead forecasting of global solar radiation for arid zones using deep learning
Chandola, Deeksha; Gupta, Harsh; Tikkiwal, Vinay Anand; Bohra, Manoj Kumar
通讯作者Chandola, D (corresponding author), Jaypee Inst Informat Technol, Dept Elect & Commun Engn, Noida 201304, India.
会议名称International Conference on Computational Intelligence and Data Science (ICCIDS)
会议日期SEP 06-07, 2019
会议地点NorthCap Univ, Gurugram, INDIA
英文摘要Solar irradiance is fluctuating and interutittent in nature. In order to optimally farness solar energy, this variability needs to be accounted for. Forecasting solar radiation proves to be helpful in optimal design, and operation of solar energy based systems. This paper presents a solar irradiance forecasting scheme for multi-horizon forecasting of solar radiation considering 3/6/24 hours ahead scenarios. The proposed model uses long short tett!t memory network, considering the dependence between hours of the same day along with other variables such as: direct horizontal irradiance, direct notinal irradiance, relative humidity, dew point, temperature, wind speed, and wind direction. Solar radiations for four different locations of the Thar desert region have been forecasted. The model is optimized in tent's of number of neurons and is evaluated using standard statistical indicators: RMSE and MAPE. RMSE for four different locations varied in the range of 0.099 to 0.181, along with MAPE values, which range from 6.79% to 10.47%. Low values of RMSE and MAPE indicate the efficacy of the proposed model. (C) 2020 The Authors. Published by Elsevier B.V.
英文关键词Solar irradiance Artificial neural network LSTM Forecasting RMSE
来源出版物INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE
ISSN1877-0509
出版年2020
卷号167
页码626-635
出版者ELSEVIER SCIENCE BV
类型Proceedings Paper
语种英语
开放获取类型gold
收录类别CPCI-S
WOS记录号WOS:000582710700066
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS研究方向Computer Science
资源类型会议论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/337085
作者单位[Chandola, Deeksha; Tikkiwal, Vinay Anand] Jaypee Inst Informat Technol, Dept Elect & Commun Engn, Noida 201304, India; [Gupta, Harsh] Jaypee Inst Informat Technol, Noida 201304, India; [Bohra, Manoj Kumar] Manipal Univ, Sch Comp & Informat Technol, Jaipur 30300, Rajasthan, India
推荐引用方式
GB/T 7714
Chandola, Deeksha,Gupta, Harsh,Tikkiwal, Vinay Anand,et al. Multi-step ahead forecasting of global solar radiation for arid zones using deep learning[C]:ELSEVIER SCIENCE BV,2020:626-635.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chandola, Deeksha]的文章
[Gupta, Harsh]的文章
[Tikkiwal, Vinay Anand]的文章
百度学术
百度学术中相似的文章
[Chandola, Deeksha]的文章
[Gupta, Harsh]的文章
[Tikkiwal, Vinay Anand]的文章
必应学术
必应学术中相似的文章
[Chandola, Deeksha]的文章
[Gupta, Harsh]的文章
[Tikkiwal, Vinay Anand]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。