Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1088/1748-9326/ac2fde |
Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management | |
Chakraborty, Debaditya; Basagaoglu, Hakan; Gutierrez, Lilianna; Mirchi, Ali | |
通讯作者 | Chakraborty, D (corresponding author), Univ Texas San Antonio, Sch Civil & Environm Engn & Construct Management, 501 W Cesar E Chavez Blvd, San Antonio, TX 78207 USA. |
来源期刊 | ENVIRONMENTAL RESEARCH LETTERS
![]() |
ISSN | 1748-9326 |
出版年 | 2021 |
卷号 | 16期号:11 |
英文摘要 | Trustworthy projections of hydrological droughts are pivotal for identifying the key hydroclimatic factors that affect future groundwater level (GWL) fluctuations in drought-prone karstic aquifers that provide water for human consumption and sustainable ecosystems. Herein, we introduce an explainable artificial intelligence (XAI) framework integrated with scenario-based downscaled climate projections from global circulation models. We use the integrated framework to investigate nonlinear hydroclimatic dependencies and interactions behind future hydrological droughts in the Edwards Aquifer Region, an ecologically fragile groundwater-dependent semi-arid region in southern United States. We project GWLs under different future climate scenarios to evaluate the likelihood of severe hydrological droughts under a warm-wet future in terms of mandated groundwater pumping reductions in droughts as part of the habitat conservation plan in effect to protect threatened and endangered endemic aquatic species. The XAI model accounts for the expected non-linear dynamics between GWLs and climatic variables in the complex human-natural system, which is not captured in simple linear models. The XAI-based analysis reveals the critical temperature inflection point beyond which groundwater depletion is triggered despite increased average precipitation. Compound effects of increased evapotranspiration, lower soil moisture, and reduced diffuse recharge due to warmer temperatures could amplify severe hydrological droughts that lower GWLs, potentially exacerbating the groundwater sustainability challenges in the drought-prone karstic aquifer despite an increasing precipitation trend. |
英文关键词 | forecasting model explainable artificial intelligence climate change groundwater depletion hydrological drought |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000712050400001 |
WOS关键词 | CLIMATE ; RECHARGE ; CYCLE |
WOS类目 | Environmental Sciences ; Meteorology & Atmospheric Sciences |
WOS研究方向 | Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/368234 |
作者单位 | [Chakraborty, Debaditya] Univ Texas San Antonio, Sch Civil & Environm Engn & Construct Management, 501 W Cesar E Chavez Blvd, San Antonio, TX 78207 USA; [Basagaoglu, Hakan] Edwards Aquifer Author, 900 E Quincy St, Antonio, TX 78215 USA; [Gutierrez, Lilianna] Univ Texas San Antonio, Dept Chem Engn, One UTSA Circle, San Antonio, TX 78249 USA; [Mirchi, Ali] Oklahoma State Univ, Dept Biosyst & Agr Engn, 111 Agr Hall, Stillwater, OK 74078 USA |
推荐引用方式 GB/T 7714 | Chakraborty, Debaditya,Basagaoglu, Hakan,Gutierrez, Lilianna,et al. Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management[J],2021,16(11). |
APA | Chakraborty, Debaditya,Basagaoglu, Hakan,Gutierrez, Lilianna,&Mirchi, Ali.(2021).Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management.ENVIRONMENTAL RESEARCH LETTERS,16(11). |
MLA | Chakraborty, Debaditya,et al."Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management".ENVIRONMENTAL RESEARCH LETTERS 16.11(2021). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。