Arid
DOI10.1088/1748-9326/ac2fde
Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management
Chakraborty, Debaditya; Basagaoglu, Hakan; Gutierrez, Lilianna; Mirchi, Ali
通讯作者Chakraborty, D (corresponding author), Univ Texas San Antonio, Sch Civil & Environm Engn & Construct Management, 501 W Cesar E Chavez Blvd, San Antonio, TX 78207 USA.
来源期刊ENVIRONMENTAL RESEARCH LETTERS
ISSN1748-9326
出版年2021
卷号16期号:11
英文摘要Trustworthy projections of hydrological droughts are pivotal for identifying the key hydroclimatic factors that affect future groundwater level (GWL) fluctuations in drought-prone karstic aquifers that provide water for human consumption and sustainable ecosystems. Herein, we introduce an explainable artificial intelligence (XAI) framework integrated with scenario-based downscaled climate projections from global circulation models. We use the integrated framework to investigate nonlinear hydroclimatic dependencies and interactions behind future hydrological droughts in the Edwards Aquifer Region, an ecologically fragile groundwater-dependent semi-arid region in southern United States. We project GWLs under different future climate scenarios to evaluate the likelihood of severe hydrological droughts under a warm-wet future in terms of mandated groundwater pumping reductions in droughts as part of the habitat conservation plan in effect to protect threatened and endangered endemic aquatic species. The XAI model accounts for the expected non-linear dynamics between GWLs and climatic variables in the complex human-natural system, which is not captured in simple linear models. The XAI-based analysis reveals the critical temperature inflection point beyond which groundwater depletion is triggered despite increased average precipitation. Compound effects of increased evapotranspiration, lower soil moisture, and reduced diffuse recharge due to warmer temperatures could amplify severe hydrological droughts that lower GWLs, potentially exacerbating the groundwater sustainability challenges in the drought-prone karstic aquifer despite an increasing precipitation trend.
英文关键词forecasting model explainable artificial intelligence climate change groundwater depletion hydrological drought
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000712050400001
WOS关键词CLIMATE ; RECHARGE ; CYCLE
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/368234
作者单位[Chakraborty, Debaditya] Univ Texas San Antonio, Sch Civil & Environm Engn & Construct Management, 501 W Cesar E Chavez Blvd, San Antonio, TX 78207 USA; [Basagaoglu, Hakan] Edwards Aquifer Author, 900 E Quincy St, Antonio, TX 78215 USA; [Gutierrez, Lilianna] Univ Texas San Antonio, Dept Chem Engn, One UTSA Circle, San Antonio, TX 78249 USA; [Mirchi, Ali] Oklahoma State Univ, Dept Biosyst & Agr Engn, 111 Agr Hall, Stillwater, OK 74078 USA
推荐引用方式
GB/T 7714
Chakraborty, Debaditya,Basagaoglu, Hakan,Gutierrez, Lilianna,et al. Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management[J],2021,16(11).
APA Chakraborty, Debaditya,Basagaoglu, Hakan,Gutierrez, Lilianna,&Mirchi, Ali.(2021).Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management.ENVIRONMENTAL RESEARCH LETTERS,16(11).
MLA Chakraborty, Debaditya,et al."Explainable AI reveals new hydroclimatic insights for ecosystem-centric groundwater management".ENVIRONMENTAL RESEARCH LETTERS 16.11(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chakraborty, Debaditya]的文章
[Basagaoglu, Hakan]的文章
[Gutierrez, Lilianna]的文章
百度学术
百度学术中相似的文章
[Chakraborty, Debaditya]的文章
[Basagaoglu, Hakan]的文章
[Gutierrez, Lilianna]的文章
必应学术
必应学术中相似的文章
[Chakraborty, Debaditya]的文章
[Basagaoglu, Hakan]的文章
[Gutierrez, Lilianna]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。