Arid
DOI10.3390/w13040557
Reliable Evapotranspiration Predictions with a Probabilistic Machine Learning Framework
Basagaoglu, Hakan; Chakraborty, Debaditya; Winterle, James
通讯作者Basagaoglu, H (corresponding author), Edwards Aquifer Author, San Antonio, TX 78215 USA.
来源期刊WATER
EISSN2073-4441
出版年2021
卷号13期号:4
英文摘要Evapotranspiration is often expressed in terms of reference crop evapotranspiration (ETo), actual evapotranspiration (ETa), or surface water evaporation (E-sw), and their reliable predictions are critical for groundwater, irrigation, and aquatic ecosystem management in semi-arid regions. We demonstrated that a newly developed probabilistic machine learning (ML) model, using a hybridized boosting framework, can simultaneously predict the daily ETo, E-sw, & ETa from local hydroclimate data with high accuracy. The probabilistic approach exhibited great potential to overcome data uncertainties, in which 100% of the ETo, 89.9% of the E-sw, and 93% of the ETa test data at three watersheds were within the models' 95% prediction intervals. The modeling results revealed that the hybrid boosting framework can be used as a reliable computational tool to predict ETo while bypassing net solar radiation calculations, estimate E-sw while overcoming uncertainties associated with pan evaporation & pan coefficients, and predict ETa while offsetting high capital & operational costs of EC towers. In addition, using the Shapley analysis built on a coalition game theory, we identified the order of importance and interactions between the hydroclimatic variables to enhance the models' transparency and trustworthiness.
英文关键词evapotranspiration machine learning probabilistic model shapley analysis
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000624883500001
WOS类目Environmental Sciences ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/351938
作者单位[Basagaoglu, Hakan; Winterle, James] Edwards Aquifer Author, San Antonio, TX 78215 USA; [Chakraborty, Debaditya] Univ Texas San Antonio, Dept Construct Sci, San Antonio, TX 78207 USA
推荐引用方式
GB/T 7714
Basagaoglu, Hakan,Chakraborty, Debaditya,Winterle, James. Reliable Evapotranspiration Predictions with a Probabilistic Machine Learning Framework[J],2021,13(4).
APA Basagaoglu, Hakan,Chakraborty, Debaditya,&Winterle, James.(2021).Reliable Evapotranspiration Predictions with a Probabilistic Machine Learning Framework.WATER,13(4).
MLA Basagaoglu, Hakan,et al."Reliable Evapotranspiration Predictions with a Probabilistic Machine Learning Framework".WATER 13.4(2021).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Basagaoglu, Hakan]的文章
[Chakraborty, Debaditya]的文章
[Winterle, James]的文章
百度学术
百度学术中相似的文章
[Basagaoglu, Hakan]的文章
[Chakraborty, Debaditya]的文章
[Winterle, James]的文章
必应学术
必应学术中相似的文章
[Basagaoglu, Hakan]的文章
[Chakraborty, Debaditya]的文章
[Winterle, James]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。