Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/w16162244 |
The Hydrochemical Characteristics and Formation Mechanism of Highly Mineralized Coal Mine Water in Semi-Arid Regions in Northwest China | |
Yang, Jian; Zhao, Wei; Liang, Xiangyang; Xu, Feng | |
通讯作者 | Zhao, W |
来源期刊 | WATER
![]() |
EISSN | 2073-4441 |
出版年 | 2024 |
卷号 | 16期号:16 |
英文摘要 | The over-exploitation of groundwater and the deterioration of its quality have heightened the importance of non-traditional water resources, such as mine water. The study of the water's chemical characteristics and the formation mechanism of high-salinity mine water in semi-arid regions holds significant importance for zero discharge and the resource utilization of mine water in Northwest China. In this study, a total of 38 groundwater and mine water samples were collected to examine the hydrogeochemical characteristics of high-salinity mine water using Piper diagrams and Gibbs diagrams, as well as isotope analyses and ion ratio coefficients. Additionally, the corresponding mine water treatment recommendations were put forward. The results show that the TDS content of groundwater increases with hydrographic depth. The average TDS concentration of Quaternary, Luohe, and Anding groundwater is 336.87, 308.67, and 556.29 mg/L, respectively. However, the TDS concentration of Zhiluo groundwater and mine water is 2768.57 and 3826.40 mg/L, respectively, which belong to high-salinity water. The Quaternary, Luohe, and Anding groundwater hydrochemical type is predominantly HCO3-Ca type, and the Zhiluo groundwater and mine water hydrochemical type is predominantly the SO4-Na type. Furthermore, there is minimal difference observed in delta D and delta 18O values among these waters. It can be inferred that the Zhiluo Formation in groundwater serves as the primary source of mine water supply, primarily influenced by the processes of concentration caused by evaporation. The high salinity of mine water is closely related to the high salinity of Zhiluo groundwater. The high salinity of groundwater has evolved gradually under the control of the concentration caused by evaporation and rock-weathering processes. The dissolution of salt rock, gypsum, along with other minerals, serves as the material basis for high-salinity groundwater formation. In addition, the evolution of major ions is also affected by cation exchange. The TDS concentration of mine water ranges from 3435.4 mg/L to 4414.3 mg/L, and the combined treatment process of nanofiltration and reverse osmosis can be selected to remove the salt. After treatment, mine water can be used for productive, domestic, and ecological demands. |
英文关键词 | high-salinity mine water semi-arid regions Northwest China hydrogeochemical characteristics |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:001304857600001 |
WOS关键词 | SHALLOW GROUNDWATER ; RESOURCES ; SALINITY |
WOS类目 | Environmental Sciences ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Water Resources |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/405896 |
推荐引用方式 GB/T 7714 | Yang, Jian,Zhao, Wei,Liang, Xiangyang,et al. The Hydrochemical Characteristics and Formation Mechanism of Highly Mineralized Coal Mine Water in Semi-Arid Regions in Northwest China[J],2024,16(16). |
APA | Yang, Jian,Zhao, Wei,Liang, Xiangyang,&Xu, Feng.(2024).The Hydrochemical Characteristics and Formation Mechanism of Highly Mineralized Coal Mine Water in Semi-Arid Regions in Northwest China.WATER,16(16). |
MLA | Yang, Jian,et al."The Hydrochemical Characteristics and Formation Mechanism of Highly Mineralized Coal Mine Water in Semi-Arid Regions in Northwest China".WATER 16.16(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。