Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/toxics12070523 |
Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes | |
Feng, Weiying; Tao, Yingru; Wang, Tengke; Yang, Fang; Zhao, Meng; Li, Yuxin; Miao, Qingfeng; Li, Tingting; Liao, Haiqing | |
通讯作者 | Yang, F |
来源期刊 | TOXICS
![]() |
EISSN | 2305-6304 |
出版年 | 2024 |
卷号 | 12期号:7 |
英文摘要 | Phosphorus (P) is a crucial nutrient in lake ecosystems and organic phosphorus (Po) is a significant component. However, the distribution characteristics and migration behaviour of Po in ice-water-sediment systems under freezing and thawing conditions in cold and arid regions remain unclear. This study aims to investigate the forms of Po and its contribution to endogenous P pollution. We selected three lakes (Dai, Hu, and Wu Lake) and employed phosphorus nuclear magnetic resonance (P-31-NMR) techniques to analyse the following: (1) The total phosphorus (TP) content, which was the highest in the water from Dai Lake (0.16 mg/L), with substantial seasonal variation observed in Wu Lake, where P content was four times higher in summer than in winter because of farmland drainage. (2) Eutrophication analysis, which indicated that Dai Lake had significantly higher eutrophication levels than Wu Lake, with P being the controlling factor in Dai Lake and both N and P in Wu Lake. The proportion of Po in the TP content was 90%, 70%, and 55% for Wu, Dai, and Hu Lake, respectively, indicating that Po was the main component of eutrophic lakes. (3) P-31-NMR, which revealed that orthophosphate (Ortho-P) and monoester phosphate (Mon-P) were the main P components in the winter, with a higher P content in Dai Lake. Ortho-P has a higher content in ice, indicating that inorganic phosphorus (Pi) migration is the main factor in ice-water media. Mon-P showed multiple peaks in Dai Lake, indicating a complex composition of adenosine monophosphate and glucose-1-phosphate. (4) The ice-water phase change simulation experiments, which showed that phosphate was the least repelled in ice, while pyrophosphate (Pyro-P) and macromolecular P were more repelled. Adding sediment enhanced the migration of P but did not change the repulsion of macromolecular P, suggesting the molecular structure as the main influencing factor. These results provide important scientific evidence for the quantitative analysis of Po pollution in lake water environments, aiding in P load reduction and risk prevention and control. |
英文关键词 | ice lake aquatic ecosystem P-31-NMR freeze-thaw cycle |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:001278892400001 |
WOS关键词 | PARTICULATE PHOSPHORUS ; ORGANIC PHOSPHORUS ; EUTROPHIC LAKE ; P-31 NMR ; SPECIATION ; RIVER ; ENVIRONMENT ; NITROGEN ; IMPACTS ; DRIVEN |
WOS类目 | Environmental Sciences ; Toxicology |
WOS研究方向 | Environmental Sciences & Ecology ; Toxicology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/405810 |
推荐引用方式 GB/T 7714 | Feng, Weiying,Tao, Yingru,Wang, Tengke,et al. Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes[J],2024,12(7). |
APA | Feng, Weiying.,Tao, Yingru.,Wang, Tengke.,Yang, Fang.,Zhao, Meng.,...&Liao, Haiqing.(2024).Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes.TOXICS,12(7). |
MLA | Feng, Weiying,et al."Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes".TOXICS 12.7(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。