Arid
DOI10.1038/s41598-024-60033-6
A longitudinal analysis of soil salinity changes using remotely sensed imageries
Bandak, Soraya; Movahedi-Naeini, Seyed Alireza; Mehri, Saeed; Lotfata, Aynaz
通讯作者Bandak, S
来源期刊SCIENTIFIC REPORTS
ISSN2045-2322
出版年2024
卷号14期号:1
英文摘要Soil salinization threatens agricultural productivity, leading to desertification and land degradation. Given the challenges of conducting labor-intensive and expensive field studies and laboratory analyses on a large scale, recent efforts have focused on leveraging remote sensing techniques to study soil salinity. This study assesses the importance of soil salinity indices' derived from remotely sensed imagery. Indices derived from Landsat 8 (L8) and Sentinel 2 (S2) imagery are used in Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Decision Tree (DT), and Support Vector Machine (SVR) are associated with the electrical (EC) conductivity of 280 soil samples across 24,000 hectares in Northeast Iran. The results indicated that the DT is the best-performing method (RMSE = 12.25, MAE = 2.15, R-2 = 0.85 using L8 data and RMSE = 10.9, MAE = 2.12, and R-2 = 0.86 using S2 data). Also, the results showed that Multi-resolution Valley Bottom Flatness (MrVBF), moisture index, Topographic Wetness Index (TWI), and Topographic Position Indicator (TPI) are the most important salinity indices. Subsequently, a time series analysis indicated a reduction in salinity and sodium levels in regions with installed drainage networks, underscoring the effectiveness of the drainage system. These findings can assist decision-making about land use and conservation efforts, particularly in regions with high soil salinity.
英文关键词Soil salinization Remote sensing Predictive modeling Decision tree
类型Article
语种英语
开放获取类型Green Published, gold
收录类别SCI-E
WOS记录号WOS:001253949600026
WOS关键词MACHINE LEARNING ALGORITHMS ; DIFFERENCE WATER INDEX ; RANDOM FOREST ; VEGETATION INDEX ; SENTINEL-2 DATA ; PREDICTION ; REGION ; LAND ; MSI ; CLASSIFICATION
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/405613
推荐引用方式
GB/T 7714
Bandak, Soraya,Movahedi-Naeini, Seyed Alireza,Mehri, Saeed,et al. A longitudinal analysis of soil salinity changes using remotely sensed imageries[J],2024,14(1).
APA Bandak, Soraya,Movahedi-Naeini, Seyed Alireza,Mehri, Saeed,&Lotfata, Aynaz.(2024).A longitudinal analysis of soil salinity changes using remotely sensed imageries.SCIENTIFIC REPORTS,14(1).
MLA Bandak, Soraya,et al."A longitudinal analysis of soil salinity changes using remotely sensed imageries".SCIENTIFIC REPORTS 14.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bandak, Soraya]的文章
[Movahedi-Naeini, Seyed Alireza]的文章
[Mehri, Saeed]的文章
百度学术
百度学术中相似的文章
[Bandak, Soraya]的文章
[Movahedi-Naeini, Seyed Alireza]的文章
[Mehri, Saeed]的文章
必应学术
必应学术中相似的文章
[Bandak, Soraya]的文章
[Movahedi-Naeini, Seyed Alireza]的文章
[Mehri, Saeed]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。