Arid
DOI10.3390/rs16142549
Ensemble Band Selection for Quantification of Soil Total Nitrogen Levels from Hyperspectral Imagery
Misbah, Khalil; Laamrani, Ahmed; Voroney, Paul; Khechba, Keltoum; Casa, Raffaele; Chehbouni, Abdelghani
通讯作者Misbah, K
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2024
卷号16期号:14
英文摘要Total nitrogen (TN) is a critical nutrient for plant growth, and its monitoring in agricultural soil is vital for farm managers. Traditional methods of estimating soil TN levels involve laborious and costly chemical analyses, especially when applied to large areas with multiple sampling points. Remote sensing offers a promising alternative for identifying, tracking, and mapping soil TN levels at various scales, including the field, landscape, and regional levels. Spaceborne hyperspectral sensing has shown effectiveness in reflecting soil TN levels. This study evaluates the efficiency of spectral reflectance at visible near-infrared (VNIR) and shortwave near-infrared (SWIR) regions to identify the most informative hyperspectral bands responding to the TN content in agricultural soil. In this context, we used PRISMA (PRecursore IperSpettrale della Missione Applicativa) hyperspectral imagery with ensemble learning modeling to identify N-specific absorption features. This ensemble consisted of three multivariate regression techniques, partial least square (PLSR), support vector regression (SVR), and Gaussian process regression (GPR) learners. The soil TN data (n = 803) were analyzed against a hyperspectral PRISMA imagery to perform spectral band selection. The 803 sampled data points were derived from open-access soil property and nutrient maps for Africa at a 30 m resolution over a bare agricultural field in southern Morocco. The ensemble learning strategy identified several bands in the SWIR in the regions of 900-1300 nm and 1900-2200 nm. The models achieved coefficient-of-determination values ranging from 0.63 to 0.73 and root-mean-square error values of 0.14 g/kg for PLSR, 0.11 g/kg for SVR, and 0.12 g/kg for GPR, which had been boosted to an R2 of 0.84, an RMSE of 0.08 g/kg, and an RPD of 2.53 by the ensemble, demonstrating the model's accuracy in predicting the soil TN content. These results underscore the potential for using spaceborne hyperspectral imagery for soil TN estimation, enabling the development of decision-support tools for variable-rate fertilization and advancing our understanding of soil spectral responses for improved soil management.
英文关键词agriculture soil nutrients hyperspectral remote sensing semi-arid regions croplands
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001277381400001
WOS关键词INFRARED REFLECTANCE SPECTROSCOPY ; ORGANIC-MATTER ; REGRESSION ; SUPPORT ; CROPS ; MACRONUTRIENTS ; CLASSIFICATION ; PREDICTION ; MACHINE ; INDEXES
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/405313
推荐引用方式
GB/T 7714
Misbah, Khalil,Laamrani, Ahmed,Voroney, Paul,et al. Ensemble Band Selection for Quantification of Soil Total Nitrogen Levels from Hyperspectral Imagery[J],2024,16(14).
APA Misbah, Khalil,Laamrani, Ahmed,Voroney, Paul,Khechba, Keltoum,Casa, Raffaele,&Chehbouni, Abdelghani.(2024).Ensemble Band Selection for Quantification of Soil Total Nitrogen Levels from Hyperspectral Imagery.REMOTE SENSING,16(14).
MLA Misbah, Khalil,et al."Ensemble Band Selection for Quantification of Soil Total Nitrogen Levels from Hyperspectral Imagery".REMOTE SENSING 16.14(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Misbah, Khalil]的文章
[Laamrani, Ahmed]的文章
[Voroney, Paul]的文章
百度学术
百度学术中相似的文章
[Misbah, Khalil]的文章
[Laamrani, Ahmed]的文章
[Voroney, Paul]的文章
必应学术
必应学术中相似的文章
[Misbah, Khalil]的文章
[Laamrani, Ahmed]的文章
[Voroney, Paul]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。