Arid
DOI10.3390/rs16111838
Modeling with Hysteresis Better Captures Grassland Growth in Asian Drylands
Miao, Lijuan; Zhang, Yuyang; Agathokleous, Evgenios; Bao, Gang; Zhu, Ziyu; Liu, Qiang
通讯作者Liu, Q
来源期刊REMOTE SENSING
EISSN2072-4292
出版年2024
卷号16期号:11
英文摘要Climate warming hampers grassland growth, particularly in dryland regions. To preserve robust grassland growth and ensure the resilience of grassland in these arid areas, a comprehensive understanding of the interactions between vegetation and climate is imperative. However, existing studies often analyze climate-vegetation interactions using concurrent vegetation indices and meteorological data, neglecting time-lagged influences from various determinants. To address this void, we employed the random forest machine learning method to predict the grassland NDVI (Normalized Difference Vegetation Index) in Asian drylands (including five central Asia countries, the Republic of Mongolia, and Parts of China) from 2001 to 2020, incorporating time-lag influences. We evaluated the prediction model's performance using three indexes, namely the coefficient of determination (R-2), root-mean-square error (RMSE), and Mean Absolute Error (MAE). The results underscore the superiority of the model incorporating time-lag influences, demonstrating its enhanced capability to capture the grassland NDVI in Asian drylands (R-2 >= 0.915, RMSE <= 0.033, MAE <= 0.019). Conversely, the model without time-lag influences exhibited relatively poor performance, notably inferior to the time-lag-inclusive model. The latter result aligns closely with remote sensing observations and more accurately reproduces the spatial distributions of the grassland NDVI in Asian drylands. Over the study period, the grassland NDVI in Asian drylands exhibited a weak decreasing trend, primarily concentrated in the western region. Notably, key factors influencing the grassland NDVI included the average grassland NDVI in the previous month, total precipitation in the current month, and average soil moisture in the previous month. This study not only pioneers a novel approach to predicting grassland growth but also contributes valuable insights for formulating sustainable strategies to preserve the integrity of grassland ecosystems.
英文关键词grassland NDVI time lag random forests prediction Asian drylands
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001246877400001
WOS关键词CLIMATE-CHANGE ; SOIL-MOISTURE ; VEGETATION ; TEMPERATURE ; PREDICTION ; PATTERNS ; PLATEAU ; NDVI
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/405299
推荐引用方式
GB/T 7714
Miao, Lijuan,Zhang, Yuyang,Agathokleous, Evgenios,et al. Modeling with Hysteresis Better Captures Grassland Growth in Asian Drylands[J],2024,16(11).
APA Miao, Lijuan,Zhang, Yuyang,Agathokleous, Evgenios,Bao, Gang,Zhu, Ziyu,&Liu, Qiang.(2024).Modeling with Hysteresis Better Captures Grassland Growth in Asian Drylands.REMOTE SENSING,16(11).
MLA Miao, Lijuan,et al."Modeling with Hysteresis Better Captures Grassland Growth in Asian Drylands".REMOTE SENSING 16.11(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Miao, Lijuan]的文章
[Zhang, Yuyang]的文章
[Agathokleous, Evgenios]的文章
百度学术
百度学术中相似的文章
[Miao, Lijuan]的文章
[Zhang, Yuyang]的文章
[Agathokleous, Evgenios]的文章
必应学术
必应学术中相似的文章
[Miao, Lijuan]的文章
[Zhang, Yuyang]的文章
[Agathokleous, Evgenios]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。