Arid
DOI10.1073/pnas.2304671121
OASIS: An interpretable, finite-sample valid alternative to Pearson's X2 for scientific discovery
Baharav, Tavor Z.; Tse, David; Salzman, Julia
通讯作者Salzman, J
来源期刊PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
ISSN0027-8424
EISSN1091-6490
出版年2024
卷号121期号:15
英文摘要Contingency tables, data represented as counts matrices, are ubiquitous across quantitative research and data-science applications. Existing statistical tests are insufficient however, as none are simultaneously computationally efficient and statistically valid for a finite number of observations. In this work, motivated by a recent application in reference-free genomic inference [K. Chaung et al., Cell 186, 5440-5456 (2023)], we develop Optimized Adaptive Statistic for Inferring Structure (OASIS), a family of statistical tests for contingency tables. OASIS constructs a test statistic which is linear in the normalized data matrix, providing closed-form P-value bounds through classical concentration inequalities. In the process, OASIS provides a decomposition of the table, lending interpretability to its rejection of the null. We derive the asymptotic distribution of the OASIS test statistic, showing that these finite-sample bounds correctly characterize the test statistic's P-value up to a variance term. Experiments on genomic sequencing data highlight the power and interpretability of OASIS. Using OASIS, we develop a method that can detect SARS-CoV-2 and Mycobacterium tuberculosis strains de novo, which existing approaches cannot achieve. We demonstrate in simulations that OASIS is robust to overdispersion, a common feature in genomic data like single-cell RNA sequencing, where under accepted noise models OASIS provides good control of the false discovery rate, while Pearson's X2 consistently rejects the null. Additionally, we show in simulations that OASIS is more powerful than Pearson's X2 in certain regimes, including for some important two group alternatives, which we corroborate with approximate power calculations.
英文关键词computational genomics reference genome free inference contingency table finite-sample P-value
类型Article
语种英语
开放获取类型Green Published, hybrid
收录类别SCI-E
WOS记录号WOS:001207680000004
WOS关键词CHI-SQUARE
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/405230
推荐引用方式
GB/T 7714
Baharav, Tavor Z.,Tse, David,Salzman, Julia. OASIS: An interpretable, finite-sample valid alternative to Pearson's X2 for scientific discovery[J],2024,121(15).
APA Baharav, Tavor Z.,Tse, David,&Salzman, Julia.(2024).OASIS: An interpretable, finite-sample valid alternative to Pearson's X2 for scientific discovery.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,121(15).
MLA Baharav, Tavor Z.,et al."OASIS: An interpretable, finite-sample valid alternative to Pearson's X2 for scientific discovery".PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 121.15(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Baharav, Tavor Z.]的文章
[Tse, David]的文章
[Salzman, Julia]的文章
百度学术
百度学术中相似的文章
[Baharav, Tavor Z.]的文章
[Tse, David]的文章
[Salzman, Julia]的文章
必应学术
必应学术中相似的文章
[Baharav, Tavor Z.]的文章
[Tse, David]的文章
[Salzman, Julia]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。