Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1371/journal.pone.0306782 |
Developing a transit desert interactive dashboard: Supervised modeling for forecasting transit deserts | |
Choi, Seung Jun; Jiao, Junfeng | |
通讯作者 | Choi, SJ |
来源期刊 | PLOS ONE
![]() |
ISSN | 1932-6203 |
出版年 | 2024 |
卷号 | 19期号:7 |
英文摘要 | Transit deserts refer to regions with a gap in transit services, with the demand for transit exceeding the supply. This study goes beyond merely identifying transit deserts to suggest actionable solutions. Using a multi-class supervised machine learning framework, we analyzed factors leading to transit deserts, distinguishing demand by gender. Our focus was on peak-time periods. After assessing the Support Vector Machine, Decision Tree, Random Forest, and K-nearest Neighbor, we settled on the Random Forest method, supported by Diverse Counterfactual Explanation and SHapley Additive Explanation in our analysis. The ranking of feature importance in the trained Random Forest model revealed that factors such as density, design, distance to transit, diversity in the built environment, and sociodemographic characteristics significantly contribute to the classification of transit deserts. Diverse Counterfactual Explanation suggested that a reduction in population density and an increase in the proportion of green open spaces would likely facilitate the transformation of transit deserts into transit oases. SHapley Additive Explanation highlighted the differential impact of various features on each identified transit desert. Our analysis results indicate that identifying transit deserts can vary depending on whether the data is aggregated or separated by demographics. We found areas that have unique transit needs based on gender. The disparity in transit services was particularly pronounced for women. Our model pinpointed the core elements that define a transit desert. Broadly, to address transit deserts, strategies should prioritize the needs of disadvantaged groups and enhance the design and accessibility of transit in the built environment. Our research extends existing analyses of transit deserts by leveraging machine learning to develop a predictive model. We developed a machine learning-powered interactive dashboard. Integrating participatory planning approaches with the development of an interactive interface could enhance ongoing community engagement. Planning practices can evolve with AI in the loop. |
类型 | Article |
语种 | 英语 |
开放获取类型 | Green Published, gold |
收录类别 | SCI-E |
WOS记录号 | WOS:001277539200013 |
WOS关键词 | TRANSPORTATION EQUITY ; BUILT ENVIRONMENT ; PUBLIC-TRANSIT ; NORTHERN ; WOMEN |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/405196 |
推荐引用方式 GB/T 7714 | Choi, Seung Jun,Jiao, Junfeng. Developing a transit desert interactive dashboard: Supervised modeling for forecasting transit deserts[J],2024,19(7). |
APA | Choi, Seung Jun,&Jiao, Junfeng.(2024).Developing a transit desert interactive dashboard: Supervised modeling for forecasting transit deserts.PLOS ONE,19(7). |
MLA | Choi, Seung Jun,et al."Developing a transit desert interactive dashboard: Supervised modeling for forecasting transit deserts".PLOS ONE 19.7(2024). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Choi, Seung Jun]的文章 |
[Jiao, Junfeng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Choi, Seung Jun]的文章 |
[Jiao, Junfeng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Choi, Seung Jun]的文章 |
[Jiao, Junfeng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。