Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/plants13050594 |
An Experimental Investigation of the Precipitation Utilization of Plants in Arid Regions | |
Feng, Wei; Ma, Xiaoxu; Yuan, Zixuan; Li, Wei; Yan, Yujie; Yang, Wenbin | |
通讯作者 | Li, W |
来源期刊 | PLANTS-BASEL
![]() |
ISSN | 2223-7747 |
出版年 | 2024 |
卷号 | 13期号:5 |
英文摘要 | What represents a water source for the ecological restoration of a plant in an arid region is still up to debate. To address this issue, we conducted an in situ experiment in the Ulan Buh Desert of China, to study desert plants absorbing atmospheric water vapor. We selected Tamarisk, a common drought-salt-tolerant species in the desert, for ecological restoration as our research subject, used a newly designed lysimeter to monitor precipitation infiltration, and a sap flow system to track reverse sap flow that occurred in the shoot, branch, and stem during the precipitation event, and observed the precipitation redistribution process of the Tamarisk plot. The results showed that Tamarisk indeed directly absorbs precipitation water: when precipitation occurs, the main stem, lateral branch, and shoot all show the signs of reversed sap flow, and the reversed sap flow accounted for 21.5% of the annual sap flow in the shoot and branch, and 13.6% in the stem. The precipitation event in the desert was dominated by light precipitation events, which accounted for 81% of the annual precipitation events. It was found that light precipitation can be directly absorbed by the Tamarisk leaves, especially during nighttime or cloudy days. Even when the precipitation is absent, it was found that desert plants can still absorb water from the unsaturated atmospheric vapor; even the absorbed atmospheric water vapor was transported from the leaves to the stem, forming a reversed sap flow, as a reversed sap flow was observed when the atmospheric relative humidity reached 75%. This study indicated that the effect of light precipitation on desert plants was significant and should not be overlooked in terms of managing the ecological and hydrological systems in arid regions. |
英文关键词 | Ulan Buh Desert arid area Tamarisk reverse sap flow atmospheric moisture |
类型 | Article |
语种 | 英语 |
开放获取类型 | Green Published, gold |
收录类别 | SCI-E |
WOS记录号 | WOS:001183063400001 |
WOS关键词 | SOIL-WATER ; ROOTS ; TRANSPIRATION ; ENVIRONMENT ; MOISTURE ; RECHARGE ; LIFE ; FLOW ; SAP ; DEW |
WOS类目 | Plant Sciences |
WOS研究方向 | Plant Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/405135 |
推荐引用方式 GB/T 7714 | Feng, Wei,Ma, Xiaoxu,Yuan, Zixuan,et al. An Experimental Investigation of the Precipitation Utilization of Plants in Arid Regions[J],2024,13(5). |
APA | Feng, Wei,Ma, Xiaoxu,Yuan, Zixuan,Li, Wei,Yan, Yujie,&Yang, Wenbin.(2024).An Experimental Investigation of the Precipitation Utilization of Plants in Arid Regions.PLANTS-BASEL,13(5). |
MLA | Feng, Wei,et al."An Experimental Investigation of the Precipitation Utilization of Plants in Arid Regions".PLANTS-BASEL 13.5(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。