Arid
DOI10.1007/s11104-023-06446-0
Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China
Xiao, Sentian; Nurmemet, Ilyas; Zhao, Jing
通讯作者Nurmemet, I
来源期刊PLANT AND SOIL
ISSN0032-079X
EISSN1573-5036
出版年2024
卷号498期号:1-2页码:451-469
英文摘要AimsSoil salinization has been an important environmental problem globally, particularly in oasis areas in arid zones. The advantages of using multi-source data, combining radar and optical remote sensing data, and applying machine learning-based algorithms to these data could be beneficial for addressing the soil salinization problem.MethodsThis study combines the environmental covariates extracted from the Gaofen-3 (GF-3) radar data, Landsat-8 multispectral data, and digital elevation model (DEM) data to explore the advantages of radar remote sensing in detecting soil salinity. The soil salinity distribution degree in the Keriya Oasis is mapped using a machine-learning-based method, and the advantages of different sensor images in predicting soil salinity are evaluated. Three soil salinity inversion models are constructed using measured electrical conductivity (EC) data, the random forest (RF), gradient boosting tree (GDBT), and extreme gradient boosting (XGBoost) models.ResultsThe best accuracy corresponding to an R2 of 0.87, and a root mean square error (RMSE) of 6.02 is achieved by the RF model on the GF-3 + Landsat-8 data. Therefore, the use of multi-source data is a more effective method for mapping soil salinity in the study area. The mapping results of the optimal model demonstrate that natural factors significantly influence the distribution of soil salinity.ConclusionThe radar polarization decomposition characteristics are incorporated into the inversion of soil salinity modeling as an environmental covariate, providing an innovative and efficient method for soil salinity estimation in arid areas.
英文关键词Soil salinization estimation GF-3 data Random forest model Polarization decomposition Multi-source data prediction
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001131653300002
WOS关键词SYNTHETIC-APERTURE RADAR ; DIELECTRIC-PROPERTIES ; RANDOM FOREST ; CLIMATE ; DESERT ; BORUTA ; OASES ; RIVER
WOS类目Agronomy ; Plant Sciences ; Soil Science
WOS研究方向Agriculture ; Plant Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/405085
推荐引用方式
GB/T 7714
Xiao, Sentian,Nurmemet, Ilyas,Zhao, Jing. Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China[J],2024,498(1-2):451-469.
APA Xiao, Sentian,Nurmemet, Ilyas,&Zhao, Jing.(2024).Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China.PLANT AND SOIL,498(1-2),451-469.
MLA Xiao, Sentian,et al."Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China".PLANT AND SOIL 498.1-2(2024):451-469.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xiao, Sentian]的文章
[Nurmemet, Ilyas]的文章
[Zhao, Jing]的文章
百度学术
百度学术中相似的文章
[Xiao, Sentian]的文章
[Nurmemet, Ilyas]的文章
[Zhao, Jing]的文章
必应学术
必应学术中相似的文章
[Xiao, Sentian]的文章
[Nurmemet, Ilyas]的文章
[Zhao, Jing]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。