Arid
DOI10.1364/OE.520667
Long-term monitoring chlorophyll-a concentration using HJ-1 A/B imagery and machine learning algorithms in typical lakes, a cold semi-arid region
Ren, Jianhua; Zhou, Haoyun; Tao, Zui; Ge, Liu; Song, Kaishan; Xu, Shiqi; Li, Yong; Zhang, Lele; Zhang, Xiyu; Li, Sijia
通讯作者Li, SJ
来源期刊OPTICS EXPRESS
ISSN1094-4087
出版年2024
卷号32期号:9页码:16371-16397
英文摘要Chlorophyll a (Chl-a) in lakes serves as an effective marker for assessing algal biomass and the nutritional level of lakes, and its observation is feasible through remote sensing methods. HJ-1 (Huanjing-1) satellite, deployed in 2008, incorporates a CCD capable of a 30 m resolution and has a revisit interval of 2 days, rendering it a superb choice or supplemental sensor for monitoring trophic state of lakes. For effective long-term and regional -scale mapping, both the imagery and the evaluation of machine learning algorithms are essential. The several typical machine learning algorithms, i.e., Support Vector Regression (SVR), Gradient Boosting Decision Trees (GBDT), XGBoost (XGB), Random Forest (RF), K -Nearest Neighbor (KNN), Kernel Ridge Regression (KRR), and Multi -Layer Perception Network (MLP), were developed using our in -situ measured Chl-a. A cross -validation grid to identify the most effective hyperparameter combinations for each algorithm was used, as well as the selected optimal superparameter combinations. In Chl-a mapping of three typical lakes, the R2 of GBDT, XGB, RF, and KRR all reached 0.90, while XGB algorithm also exhibited stable performance with the smallest error (RMSE = 3.11 mu g/L). Adjustments were made to align the Chl-a spatial -temporal patterns with past data, utilizing HJ1-A/B CCD images mapping through XGB algorithm, which demonstrates its stability. Our results highlight the considerable effectiveness and utility of HJ-1 A/B CCD imagery for evaluation and monitoring trophic state of lakes in a cold arid region, providing the application cases contribute to the ongoing efforts to monitor water qualities.
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001236762300007
WOS关键词INHERENT OPTICAL-PROPERTIES ; SEMIANALYTICAL MODEL ; REMOTE ESTIMATION ; INLAND WATERS ; PHOSPHORUS ; QUALITY ; RED
WOS类目Optics
WOS研究方向Optics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/405007
推荐引用方式
GB/T 7714
Ren, Jianhua,Zhou, Haoyun,Tao, Zui,et al. Long-term monitoring chlorophyll-a concentration using HJ-1 A/B imagery and machine learning algorithms in typical lakes, a cold semi-arid region[J],2024,32(9):16371-16397.
APA Ren, Jianhua.,Zhou, Haoyun.,Tao, Zui.,Ge, Liu.,Song, Kaishan.,...&Li, Sijia.(2024).Long-term monitoring chlorophyll-a concentration using HJ-1 A/B imagery and machine learning algorithms in typical lakes, a cold semi-arid region.OPTICS EXPRESS,32(9),16371-16397.
MLA Ren, Jianhua,et al."Long-term monitoring chlorophyll-a concentration using HJ-1 A/B imagery and machine learning algorithms in typical lakes, a cold semi-arid region".OPTICS EXPRESS 32.9(2024):16371-16397.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Jianhua]的文章
[Zhou, Haoyun]的文章
[Tao, Zui]的文章
百度学术
百度学术中相似的文章
[Ren, Jianhua]的文章
[Zhou, Haoyun]的文章
[Tao, Zui]的文章
必应学术
必应学术中相似的文章
[Ren, Jianhua]的文章
[Zhou, Haoyun]的文章
[Tao, Zui]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。