Arid
DOI10.1007/s11069-024-06550-z
Optimizing flood susceptibility assessment in semi-arid regions using ensemble algorithms: a case study of Moroccan High Atlas
Bammou, Youssef; Benzougagh, Brahim; Igmoullan, Brahim; Ouallali, Abdessalam; Kader, Shuraik; Spalevic, Velibor; Sestras, Paul; Billi, Paolo; Markovic, Slobodan B.
通讯作者Kader, S
来源期刊NATURAL HAZARDS
ISSN0921-030X
EISSN1573-0840
出版年2024
卷号120期号:8页码:7787-7816
英文摘要This study explores and compares the predictive capabilities of various ensemble algorithms, including SVM, KNN, RF, XGBoost, ANN, DT, and LR, for assessing flood susceptibility (FS) in the Houz plain of the Moroccan High Atlas. The inventory map of past flooding was prepared using binary data from 2012 events, where 1 indicates a flood-prone area and 0 a non-flood-prone or extremely low area, with 762 indicating flood-prone areas. 15 different categorical factors were determined and selected based on importance and multicollinearity tests, including slope, elevation, Normalized Difference Vegetation Index, Terrain Ruggedness Index, Stream Power Index, Land Use and Land Cover, curvature plane, curvature profile, aspect, flow accumulation, Topographic Position Index, soil type, Hydrologic Soil Group, distance from river and rainfall. Predicted FS maps for the Tensift watershed show that, only 10.75% of the mean surface area was predicted as very high risk, and 19% and 38% were estimated as low and very low risk, respectively. Similarly, the Haouz plain, exhibited an average surface area of 21.76% for very-high-risk zones, and 18.88% and 18.18% for low- and very-low-risk zones respectively. The applied algorithms met validation standards, with an average area under the curve of 0.93 and 0.91 for the learning and validation stages, respectively. Model performance analysis identified the XGBoost model as the best algorithm for flood zone mapping. This study provides effective decision-support tools for land-use planning and flood risk reduction, across globe at semi-arid regions.
英文关键词Flood susceptibility GIS Machine learning Factor importance Tensift watershed
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:001190067600001
WOS关键词RISK-ASSESSMENT ; MODELS
WOS类目Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences ; Water Resources
WOS研究方向Geology ; Meteorology & Atmospheric Sciences ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404957
推荐引用方式
GB/T 7714
Bammou, Youssef,Benzougagh, Brahim,Igmoullan, Brahim,et al. Optimizing flood susceptibility assessment in semi-arid regions using ensemble algorithms: a case study of Moroccan High Atlas[J],2024,120(8):7787-7816.
APA Bammou, Youssef.,Benzougagh, Brahim.,Igmoullan, Brahim.,Ouallali, Abdessalam.,Kader, Shuraik.,...&Markovic, Slobodan B..(2024).Optimizing flood susceptibility assessment in semi-arid regions using ensemble algorithms: a case study of Moroccan High Atlas.NATURAL HAZARDS,120(8),7787-7816.
MLA Bammou, Youssef,et al."Optimizing flood susceptibility assessment in semi-arid regions using ensemble algorithms: a case study of Moroccan High Atlas".NATURAL HAZARDS 120.8(2024):7787-7816.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bammou, Youssef]的文章
[Benzougagh, Brahim]的文章
[Igmoullan, Brahim]的文章
百度学术
百度学术中相似的文章
[Bammou, Youssef]的文章
[Benzougagh, Brahim]的文章
[Igmoullan, Brahim]的文章
必应学术
必应学术中相似的文章
[Bammou, Youssef]的文章
[Benzougagh, Brahim]的文章
[Igmoullan, Brahim]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。