Arid
DOI10.3390/land13060877
Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China
Zhang, Sheshu; Zhao, Jun; Yang, Jianxia; Xie, Jinfeng; Sun, Ziyun
通讯作者Zhao, J
来源期刊LAND
EISSN2073-445X
出版年2024
卷号13期号:6
英文摘要(1) Monitoring salinized soil in saline-alkali land is essential, requiring regional-scale soil salinity inversion. This study aims to identify sensitive variables for predicting electrical conductivity (EC) in soil, focusing on effective feature selection methods. (2) The study systematically selects a feature subset from Sentinel-1 C SAR, Sentinel-2 MSI, and SRTM DEM data. Various feature selection methods (correlation analysis, LASSO, RFE, and GRA) are employed on 79 variables. Regression models using random forest regression (RF) and partial least squares regression (PLSR) algorithms are constructed and compared. (3) The results highlight the effectiveness of the RFE algorithm in reducing model complexity. The model incorporates significant environmental factors like soil moisture, topography, and soil texture, which play an important role in modeling. Combining the method with RF improved soil salinity prediction (R2 = 0.71, RMSE = 1.47, RPD = 1.84). Overall, salinization in Minqin oasis soils was evident, especially in the unutilized land at the edge of the oasis. (4) Integrating data from different sources to construct characterization variables overcomes the limitations of a single data source. Variable selection is an effective means to address the redundancy of variable information, providing insights into feature engineering and variable selection for soil salinity estimation in arid and semi-arid regions.
英文关键词remote sensing soil salinization feature subset selection environmental covariate red edge texture feature
类型Article
语种英语
开放获取类型gold
收录类别SSCI
WOS记录号WOS:001256115300001
WOS关键词GREY RELATIONAL ANALYSIS ; VEGETATION ; SALINIZATION ; XINJIANG ; REGION ; SPECTRA ; SEASONS ; COUNTY ; SALT ; LAKE
WOS类目Environmental Studies
WOS研究方向Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404807
推荐引用方式
GB/T 7714
Zhang, Sheshu,Zhao, Jun,Yang, Jianxia,et al. Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China[J],2024,13(6).
APA Zhang, Sheshu,Zhao, Jun,Yang, Jianxia,Xie, Jinfeng,&Sun, Ziyun.(2024).Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China.LAND,13(6).
MLA Zhang, Sheshu,et al."Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China".LAND 13.6(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Sheshu]的文章
[Zhao, Jun]的文章
[Yang, Jianxia]的文章
百度学术
百度学术中相似的文章
[Zhang, Sheshu]的文章
[Zhao, Jun]的文章
[Yang, Jianxia]的文章
必应学术
必应学术中相似的文章
[Zhang, Sheshu]的文章
[Zhao, Jun]的文章
[Yang, Jianxia]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。