Arid
DOI10.1016/j.jprocont.2024.103224
A data-driven framework integrating Lyapunov-based MPC and OASIS-based observer for control beyond training domains
Bhadriraju, Bhavana; Kwon, Joseph Sang-Il; Khan, Faisal
通讯作者Kwon, JSI
来源期刊JOURNAL OF PROCESS CONTROL
ISSN0959-1524
EISSN1873-2771
出版年2024
卷号138
英文摘要Due to their predictive capabilities and computational efficiency, data -driven models are often employed in model predictive controller (MPC) design. These models offer precise predictions within their training domains, which aids in effective process control. However, real -world processes frequently experience operational changes, requiring control under new conditions that can lie beyond the training domains of existing datadriven models. Developing new models for these scenarios is challenging due to limited historical data. To address this limitation, we develop a novel data -driven control framework integrating an adaptive modeling approach called operable adaptive sparse identification of systems (OASIS) with the Luenberger observer. Firstly, we train the OASIS model and identify its domain of applicability (DA) using a support vector machinebased classifier. Subsequently, we formulate a Lyapunov-based MPC that relies on the OASIS model within the DA and the OASIS -based observer model beyond the DA. Additionally, we establish theoretical guarantees on the input -to -state stability of the observer, along with analyzing the stabilizability and recursive feasibility of the designed LMPC. The developed framework enhances the applicability of data -driven process control in diverse operating conditions. We highlighted its effectiveness using a chemical reactor example.
英文关键词Adaptive data-driven model Domain of applicability Input-to-state stability Lyapunov function Model predictive control Observer
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001240120700001
WOS关键词SPARSE IDENTIFICATION ; NONLINEAR-SYSTEMS ; PREDICTIVE CONTROL ; STABILIZATION ; REGRESSION ; DYNAMICS ; STATE
WOS类目Automation & Control Systems ; Engineering, Chemical
WOS研究方向Automation & Control Systems ; Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404676
推荐引用方式
GB/T 7714
Bhadriraju, Bhavana,Kwon, Joseph Sang-Il,Khan, Faisal. A data-driven framework integrating Lyapunov-based MPC and OASIS-based observer for control beyond training domains[J],2024,138.
APA Bhadriraju, Bhavana,Kwon, Joseph Sang-Il,&Khan, Faisal.(2024).A data-driven framework integrating Lyapunov-based MPC and OASIS-based observer for control beyond training domains.JOURNAL OF PROCESS CONTROL,138.
MLA Bhadriraju, Bhavana,et al."A data-driven framework integrating Lyapunov-based MPC and OASIS-based observer for control beyond training domains".JOURNAL OF PROCESS CONTROL 138(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
百度学术
百度学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
必应学术
必应学术中相似的文章
[Bhadriraju, Bhavana]的文章
[Kwon, Joseph Sang-Il]的文章
[Khan, Faisal]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。