Arid
DOI10.2166/hydro.2024.014
Developing an innovative machine learning model for rainfall prediction in a Semi-Arid region
Latif, Sarmad Dashti; Mohammed, Dyar Othman; Jaafar, Alhassan
通讯作者Latif, SD
来源期刊JOURNAL OF HYDROINFORMATICS
ISSN1464-7141
EISSN1465-1734
出版年2024
卷号26期号:4页码:904-914
英文摘要Due to global climate change, managing water resources is one of the most critical challenges for most countries in the world, especially in the Middle East. In the Kurdistan Region of Iraq (KRI), there is a good amount of precipitation, surface-water, and groundwater, but the main issue is mismanagement of those sources. Rainfall is one of the major sources of water resources in KRI. In order to manage the available water resources and prevent natural disasters such as floods and droughts, there is a need for reliable models for forecasting rainfall. The current study focuses on developing a hybrid model namely, seasonal autoregressive integrated moving average combined with an artificial neural network (SARIMA-ANN) for forecasting monthly rainfall at Sulaymaniyah City for the duration of 1938-2012. For comparison purposes, a conventional machine learning model, namely, artificial neural networks (ANN) has been applied on the same data. Two different statistical measurements, namely, root mean square error (RMSE) and coefficient of determination (R2) have been used to check the accuracy of the proposed models. According to the findings, SARIMA-ANN outperformed ANN with RMSE = 11.5, RMSE = 51.002, R-2= 0.98, R-2 = 0.43, respectively. The findings of the current study could contribute to sustainable development goal (SDG) 6.
英文关键词hybrid model rainfall prediction SARIMA-ANN Sulaymaniyah City Sustainable development goal (SDG) 6 water resources management
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001188590500001
WOS类目Computer Science, Interdisciplinary Applications ; Engineering, Civil ; Environmental Sciences ; Water Resources
WOS研究方向Computer Science ; Engineering ; Environmental Sciences & Ecology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404537
推荐引用方式
GB/T 7714
Latif, Sarmad Dashti,Mohammed, Dyar Othman,Jaafar, Alhassan. Developing an innovative machine learning model for rainfall prediction in a Semi-Arid region[J],2024,26(4):904-914.
APA Latif, Sarmad Dashti,Mohammed, Dyar Othman,&Jaafar, Alhassan.(2024).Developing an innovative machine learning model for rainfall prediction in a Semi-Arid region.JOURNAL OF HYDROINFORMATICS,26(4),904-914.
MLA Latif, Sarmad Dashti,et al."Developing an innovative machine learning model for rainfall prediction in a Semi-Arid region".JOURNAL OF HYDROINFORMATICS 26.4(2024):904-914.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Latif, Sarmad Dashti]的文章
[Mohammed, Dyar Othman]的文章
[Jaafar, Alhassan]的文章
百度学术
百度学术中相似的文章
[Latif, Sarmad Dashti]的文章
[Mohammed, Dyar Othman]的文章
[Jaafar, Alhassan]的文章
必应学术
必应学术中相似的文章
[Latif, Sarmad Dashti]的文章
[Mohammed, Dyar Othman]的文章
[Jaafar, Alhassan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。