Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.jconhyd.2024.104324 |
Improvement of evapotranspiration simulation study in the Hailar River basin under the influence of vegetation dynamics | |
Wang, Libo; Yinglan, A.; Wang, Guoqiang; Xue, Baolin | |
通讯作者 | Yinglan, A |
来源期刊 | JOURNAL OF CONTAMINANT HYDROLOGY
![]() |
ISSN | 0169-7722 |
EISSN | 1873-6009 |
出版年 | 2024 |
卷号 | 262 |
英文摘要 | In arid and semi-arid areas with <400 mm of precipitation, evapotranspiration (ET) accounts for about 80% of precipitation and is the main water consumer in the watershed. However, vegetation greening in recent years will increase ET and exacerbate the aridity of the area by affecting soil moisture in the root system. Vegetation changes are regional and spatially heterogeneous, therefore, in order to characterize ET changes under vegetation dynamics, it is necessary to expand the spatial scale of ET simulation. However, widely used evapotranspiration simulation models, such as the Shuttleworth-Wallace model (S-W model), are deficient in reflecting the direct and indirect effects of vertical (i.e., soil depths) and horizontal (i.e., vegetation dynamics) directions. Based on field sampling and constructed structural equation model (SEM), we found that vegetation dynamics affect evapotranspiration not only directly, but also indirectly by affecting soil moisture at different depths. On this basis, we defined the weighting coefficients of 0.85 and 0.15 for grassland vegetation zones, 0.3, 0.15, 0.20, 0.25, 0.10 for forest-grass interspersed zones, and 0.20, 0.55, 0.25 for forested zones, respectively, based on the SEM results. Different soil moisture weighting coefficients were defined within different vegetation type zones and the improved S-W model is called S-W-alpha. Comparing the simulation results with the measured data, S-W-alpha improved the ET simulation accuracy in this region by 33.92% and the improved ET spatial trend can respond to the dynamic changes of vegetation. Replacing the ET module in the Block-wise use of TOPMODEL and Muskingum-Cunge method mode (BTOP model) with the modified S-W-alpha, the results show that the simulation accuracy of the improved model is increased by 25%, and the Nash is higher than 75% for both the rate period and the validation period, which realizes the extension of the model from the point scale to the basin scale. The modified model may provide technical support for simulation of evapotranspiration and management of ecosystem health in ecologically fragile areas. |
英文关键词 | Vegetation dynamics Evapotranspiration S -W model Scale extension Arid and semiarid area |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:001206330900001 |
WOS关键词 | POTENTIAL EVAPOTRANSPIRATION ; WATER-USE ; EVAPORATION ; TEMPERATURE ; CLIMATE ; CHINA ; MODEL ; NDVI |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Water Resources |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Water Resources |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/404423 |
推荐引用方式 GB/T 7714 | Wang, Libo,Yinglan, A.,Wang, Guoqiang,et al. Improvement of evapotranspiration simulation study in the Hailar River basin under the influence of vegetation dynamics[J],2024,262. |
APA | Wang, Libo,Yinglan, A.,Wang, Guoqiang,&Xue, Baolin.(2024).Improvement of evapotranspiration simulation study in the Hailar River basin under the influence of vegetation dynamics.JOURNAL OF CONTAMINANT HYDROLOGY,262. |
MLA | Wang, Libo,et al."Improvement of evapotranspiration simulation study in the Hailar River basin under the influence of vegetation dynamics".JOURNAL OF CONTAMINANT HYDROLOGY 262(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。