Arid
DOI10.1080/01431161.2024.2349266
High-resolution feature pyramid attention network for high spatial resolution images land-cover classification in arid oasis zones
Chen, Pengdi; Liu, Yong; Liu, Yi; Ren, Yuanrui; Zhang, Baoan; Gao, Xiaolong
通讯作者Liu, Y
来源期刊INTERNATIONAL JOURNAL OF REMOTE SENSING
ISSN0143-1161
EISSN1366-5901
出版年2024
卷号45期号:11页码:3664-3688
英文摘要Land-cover classification based on remote sensing technology has been adopted for decision-making concerning agricultural development, urban planning, and ecosystem protection in arid oasis zones. The semantic segmentation method based on deep learning, as a new paradigm, can effectively overcome the limitations of traditional pixel-based and object-based methods and obtain good classification results from high spatial resolution (HSR) remote sensing images. However, how to extract the exact category boundary and realize the high precision mapping is still a problem. This paper proposes a novel high-resolution feature pyramid attention network (HRFPANet) for land-cover classification. It effectively integrates the advantages of multi-scale feature extraction, attention mechanism, and feature fusion and alleviates boundary inconsistency, roughness, and category fragmentation associated with previous semantic segmentation models. The experimental results show that the mIoU score of HRFPANet is 79.5%, which is 11.5% and 2.6% higher than that of PSPNet and UPerNet, respectively. It proves the proposed model can be used for qualified land-cover mapping in arid oasis zones. Our source code is available at https://github.com/HPU-CPD/HRFPANet.git.
英文关键词Arid oasis zones high spatial resolution image multi-scale semantic segmentation land-cover classification
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:001229887400001
WOS关键词REMOTE-SENSING IMAGES ; SEMANTIC SEGMENTATION ; NEURAL-NETWORK ; AWARE ; ROAD
WOS类目Remote Sensing ; Imaging Science & Photographic Technology
WOS研究方向Remote Sensing ; Imaging Science & Photographic Technology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404264
推荐引用方式
GB/T 7714
Chen, Pengdi,Liu, Yong,Liu, Yi,et al. High-resolution feature pyramid attention network for high spatial resolution images land-cover classification in arid oasis zones[J],2024,45(11):3664-3688.
APA Chen, Pengdi,Liu, Yong,Liu, Yi,Ren, Yuanrui,Zhang, Baoan,&Gao, Xiaolong.(2024).High-resolution feature pyramid attention network for high spatial resolution images land-cover classification in arid oasis zones.INTERNATIONAL JOURNAL OF REMOTE SENSING,45(11),3664-3688.
MLA Chen, Pengdi,et al."High-resolution feature pyramid attention network for high spatial resolution images land-cover classification in arid oasis zones".INTERNATIONAL JOURNAL OF REMOTE SENSING 45.11(2024):3664-3688.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Pengdi]的文章
[Liu, Yong]的文章
[Liu, Yi]的文章
百度学术
百度学术中相似的文章
[Chen, Pengdi]的文章
[Liu, Yong]的文章
[Liu, Yi]的文章
必应学术
必应学术中相似的文章
[Chen, Pengdi]的文章
[Liu, Yong]的文章
[Liu, Yi]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。