Arid
DOI10.1007/s44196-024-00502-y
Alzheimer's Disease Detection via Multiscale Feature Modelling Using Improved Spatial Attention Guided Depth Separable CNN
Tripathy, Santosh Kumar; Nayak, Rudra Kalyan; Gadupa, Kartik Shankar; Mishra, Rajnish Dinesh; Patel, Ashok Kumar; Satapathy, Santosh Kumar; Bhoi, Akash Kumar; Barsocchi, Paolo
通讯作者Tripathy, SK
来源期刊INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS
ISSN1875-6891
EISSN1875-6883
出版年2024
卷号17期号:1
英文摘要Early detection of Alzheimer's disease (AD) is critical due to its rising prevalence. AI-aided AD diagnosis has grown for decades. Most of these systems use deep learning using CNN. However, a few concerns must be addressed to identify AD: a. there is a lack of attention paid to spatial features; b. there is a lack of scale-invariant feature modelling; and c. the convolutional spatial attention block (C-SAB) mechanism is available in the literature, but it exploits limited feature sets from its input features to obtain a spatial attention map, which needs to be enhanced. The suggested model addresses these issues in two ways: through a backbone of multilayers of depth-separable CNN. Firstly, we propose an improved spatial convolution attention block (I-SAB) to generate an enhanced spatial attention map for the multilayer features of the backbone. The I-SAB, a modified version of the C-SAB, generates a spatial attention map by combining multiple cues from input feature maps. Such a map is forwarded to a multilayer of depth-separable CNN for further feature extraction and employs a skip connection to produce an enhanced spatial attention map. Second, we combine multilayer spatial attention features to make scale-invariant spatial attention features that can fix scale issues in MRI images. We demonstrate extensive experimentation and ablation studies using two open-source datasets, OASIS and AD-Dataset. The recommended model outperforms existing best practices with 99.75% and 96.20% accuracy on OASIS and AD-Dataset. This paper also performed a domain adaptation test on the OASIS dataset, which obtained 83.25% accuracy.
英文关键词Alzheimer's disease Deep learning Depth separable CNN Spatial attention Improved spatial attention
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001215433400001
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications
WOS研究方向Computer Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404221
推荐引用方式
GB/T 7714
Tripathy, Santosh Kumar,Nayak, Rudra Kalyan,Gadupa, Kartik Shankar,et al. Alzheimer's Disease Detection via Multiscale Feature Modelling Using Improved Spatial Attention Guided Depth Separable CNN[J],2024,17(1).
APA Tripathy, Santosh Kumar.,Nayak, Rudra Kalyan.,Gadupa, Kartik Shankar.,Mishra, Rajnish Dinesh.,Patel, Ashok Kumar.,...&Barsocchi, Paolo.(2024).Alzheimer's Disease Detection via Multiscale Feature Modelling Using Improved Spatial Attention Guided Depth Separable CNN.INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS,17(1).
MLA Tripathy, Santosh Kumar,et al."Alzheimer's Disease Detection via Multiscale Feature Modelling Using Improved Spatial Attention Guided Depth Separable CNN".INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS 17.1(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Tripathy, Santosh Kumar]的文章
[Nayak, Rudra Kalyan]的文章
[Gadupa, Kartik Shankar]的文章
百度学术
百度学术中相似的文章
[Tripathy, Santosh Kumar]的文章
[Nayak, Rudra Kalyan]的文章
[Gadupa, Kartik Shankar]的文章
必应学术
必应学术中相似的文章
[Tripathy, Santosh Kumar]的文章
[Nayak, Rudra Kalyan]的文章
[Gadupa, Kartik Shankar]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。