Arid
DOI10.1109/TIP.2024.3431451
MAS-CL: An End-to-End Multi-Atlas Supervised Contrastive Learning Framework for Brain ROI Segmentation
Sun, Liang; Fu, Yanling; Zhao, Junyong; Shao, Wei; Zhu, Qi; Zhang, Daoqiang
通讯作者Zhang, DQ
来源期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
ISSN1057-7149
EISSN1941-0042
出版年2024
卷号33页码:4319-4333
英文摘要Brain region-of-interest (ROI) segmentation with magnetic resonance (MR) images is a basic prerequisite step for brain analysis. The main problem with using deep learning for brain ROI segmentation is the lack of sufficient annotated data. To address this issue, in this paper, we propose a simple multi-atlas supervised contrastive learning framework (MAS-CL) for brain ROI segmentation with MR images in an end-to-end manner. Specifically, our MAS-CL framework mainly consists of two steps, including 1) a multi-atlas supervised contrastive learning method to learn the latent representation using a limited amount of voxel-level labeling brain MR images, and 2) brain ROI segmentation based on the pre-trained backbone using our MSA-CL method. Specifically, different from traditional contrastive learning, in our proposed method, we use multi-atlas supervised information to pre-train the backbone for learning the latent representation of input MR image, i.e., the correlation of each sample pair is defined by using the label maps of input MR image and atlas images. Then, we extend the pre-trained backbone to segment brain ROI with MR images. We perform our proposed MAS-CL framework with five segmentation methods on LONI-LPBA40, IXI, OASIS, ADNI, and CC359 datasets for brain ROI segmentation with MR images. Various experimental results suggested that our proposed MAS-CL framework can significantly improve the segmentation performance on these five datasets.
英文关键词Contrastive learning multi-atlas brain segmentation
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001282380500004
WOS关键词3D PROBABILISTIC ATLAS ; MR IMAGE ; NETWORK ; SERIES
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS研究方向Computer Science ; Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404151
推荐引用方式
GB/T 7714
Sun, Liang,Fu, Yanling,Zhao, Junyong,et al. MAS-CL: An End-to-End Multi-Atlas Supervised Contrastive Learning Framework for Brain ROI Segmentation[J],2024,33:4319-4333.
APA Sun, Liang,Fu, Yanling,Zhao, Junyong,Shao, Wei,Zhu, Qi,&Zhang, Daoqiang.(2024).MAS-CL: An End-to-End Multi-Atlas Supervised Contrastive Learning Framework for Brain ROI Segmentation.IEEE TRANSACTIONS ON IMAGE PROCESSING,33,4319-4333.
MLA Sun, Liang,et al."MAS-CL: An End-to-End Multi-Atlas Supervised Contrastive Learning Framework for Brain ROI Segmentation".IEEE TRANSACTIONS ON IMAGE PROCESSING 33(2024):4319-4333.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sun, Liang]的文章
[Fu, Yanling]的文章
[Zhao, Junyong]的文章
百度学术
百度学术中相似的文章
[Sun, Liang]的文章
[Fu, Yanling]的文章
[Zhao, Junyong]的文章
必应学术
必应学术中相似的文章
[Sun, Liang]的文章
[Fu, Yanling]的文章
[Zhao, Junyong]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。