Arid
DOI10.1109/ACCESS.2024.3408269
BSM-YOLO: A Dynamic Sparse Attention-Based Approach for Mousehole Detection
Xie, Tianshuo; Luo, Xiaoling; Pan, Xin
通讯作者Luo, XL
来源期刊IEEE ACCESS
ISSN2169-3536
出版年2024
卷号12页码:78787-78798
英文摘要In recent years, the proliferation of mousehole in grasslands has exacerbated desertification and compromised grassland productivity, posing potential threats to human safety. Consequently, the identification and forecasting of mouse-hole dynamics for effective infestation control have emerged as pressing concerns. Manual mousehole detection is labor-intensive and time-consuming, hindering comprehensive spatial understanding. Moreover, prevailing detection models lack robust feature extraction for small targets like mousehole, resulting in suboptimal recognition capabilities and diminished accuracy. Addressing these challenges, we propose an enhanced one-stage detection model BSM-YOLO based on YOLOv5 architecture. Firstly, the model integrates a BiFormer module leveraging Bi-Level Routing Attention to capture both global and local features within mousehole images. Subsequently, the incorporation of Shuffle Attention mechanisms enhances the learning of feature dependencies and intricate relationships. Lastly, the adoption of the MPDIoU loss function accurately delineates bounding box characteristics, mitigating redundant box generation and expediting model convergence. In our experimental framework, we curated a dataset comprising 2397 mousehole images to train the BSM-YOLO model. Results indicate that the BSM-YOLO model achieves an average detection accuracy of 94.5%, representing a 5.4% enhancement over the baseline YOLOv5s model. Additionally, the model demonstrates an 8.7 f/s improvement in detection speed. Furthermore, ablation experiments confirm the efficacy of each refinement incorporated into the BSM-YOLO model.
英文关键词Feature extraction YOLO Classification algorithms Biological system modeling Adaptation models Prediction algorithms Computational modeling YOLOv5 object detection deep learning mousehole
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001242938200001
WOS类目Computer Science, Information Systems ; Engineering, Electrical & Electronic ; Telecommunications
WOS研究方向Computer Science ; Engineering ; Telecommunications
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404134
推荐引用方式
GB/T 7714
Xie, Tianshuo,Luo, Xiaoling,Pan, Xin. BSM-YOLO: A Dynamic Sparse Attention-Based Approach for Mousehole Detection[J],2024,12:78787-78798.
APA Xie, Tianshuo,Luo, Xiaoling,&Pan, Xin.(2024).BSM-YOLO: A Dynamic Sparse Attention-Based Approach for Mousehole Detection.IEEE ACCESS,12,78787-78798.
MLA Xie, Tianshuo,et al."BSM-YOLO: A Dynamic Sparse Attention-Based Approach for Mousehole Detection".IEEE ACCESS 12(2024):78787-78798.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xie, Tianshuo]的文章
[Luo, Xiaoling]的文章
[Pan, Xin]的文章
百度学术
百度学术中相似的文章
[Xie, Tianshuo]的文章
[Luo, Xiaoling]的文章
[Pan, Xin]的文章
必应学术
必应学术中相似的文章
[Xie, Tianshuo]的文章
[Luo, Xiaoling]的文章
[Pan, Xin]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。