Arid
DOI10.5194/hess-28-3051-2024
When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling
Song, Yalan; Knoben, Wouter J. M.; Clark, Martyn P.; Feng, Dapeng; Lawson, Kathryn; Sawadekar, Kamlesh; Shen, Chaopeng
通讯作者Song, YL ; Shen, CP
来源期刊HYDROLOGY AND EARTH SYSTEM SCIENCES
ISSN1027-5606
EISSN1607-7938
出版年2024
卷号28期号:13页码:3051-3077
英文摘要Recent advances in differentiable modeling, a genre of physics-informed machine learning that trains neural networks (NNs) together with process-based equations, have shown promise in enhancing hydrological models' accuracy, interpretability, and knowledge-discovery potential. Current differentiable models are efficient for NN-based parameter regionalization, but the simple explicit numerical schemes paired with sequential calculations (operator splitting) can incur numerical errors whose impacts on models' representation power and learned parameters are not clear. Implicit schemes, however, cannot rely on automatic differentiation to calculate gradients due to potential issues of gradient vanishing and memory demand. Here we propose a discretize-then-optimize adjoint method to enable differentiable implicit numerical schemes for the first time for large-scale hydrological modeling. The adjoint model demonstrates comprehensively improved performance, with Kling-Gupta efficiency coefficients, peak-flow and low-flow metrics, and evapotranspiration that moderately surpass the already-competitive explicit model. Therefore, the previous sequential-calculation approach had a detrimental impact on the model's ability to represent hydrological dynamics. Furthermore, with a structural update that describes capillary rise, the adjoint model can better describe baseflow in arid regions and also produce low flows that outperform even pure machine learning methods such as long short-term memory networks. The adjoint model rectified some parameter distortions but did not alter spatial parameter distributions, demonstrating the robustness of regionalized parameterization. Despite higher computational expenses and modest improvements, the adjoint model's success removes the barrier for complex implicit schemes to enrich differentiable modeling in hydrology.
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001267236600001
WOS关键词SENSITIVITY-ANALYSIS ; HYDROLOGIC MODEL ; CALIBRATION ; UNIVERSAL ; NETWORKS
WOS类目Geosciences, Multidisciplinary ; Water Resources
WOS研究方向Geology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404129
推荐引用方式
GB/T 7714
Song, Yalan,Knoben, Wouter J. M.,Clark, Martyn P.,et al. When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling[J],2024,28(13):3051-3077.
APA Song, Yalan.,Knoben, Wouter J. M..,Clark, Martyn P..,Feng, Dapeng.,Lawson, Kathryn.,...&Shen, Chaopeng.(2024).When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling.HYDROLOGY AND EARTH SYSTEM SCIENCES,28(13),3051-3077.
MLA Song, Yalan,et al."When ancient numerical demons meet physics-informed machine learning: adjoint-based gradients for implicit differentiable modeling".HYDROLOGY AND EARTH SYSTEM SCIENCES 28.13(2024):3051-3077.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Song, Yalan]的文章
[Knoben, Wouter J. M.]的文章
[Clark, Martyn P.]的文章
百度学术
百度学术中相似的文章
[Song, Yalan]的文章
[Knoben, Wouter J. M.]的文章
[Clark, Martyn P.]的文章
必应学术
必应学术中相似的文章
[Song, Yalan]的文章
[Knoben, Wouter J. M.]的文章
[Clark, Martyn P.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。