Arid
DOI10.1016/j.heliyon.2024.e34402
Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization
Odusami, Modupe; Damasevicius, Robertas; Milieskaite-Belousoviene, Egle; Maskeliu over bar nas, Rytis
通讯作者bar Nas, RMO
来源期刊HELIYON
EISSN2405-8440
出版年2024
卷号10期号:15
英文摘要The threat posed by Alzheimer's disease (AD) to human health has grown significantly. However, the precise diagnosis and classification of AD stages remain a challenge. Neuroimaging methods such as structural magnetic resonance imaging (sMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to diagnose and categorize AD. However, feature selection approaches that are frequently used to extract additional data from multimodal imaging are prone to errors. This paper suggests using a static pulse-coupled neural network and a Laplacian pyramid to combine sMRI and FDG-PET data. After that, the fused images are used to train the Mobile Vision Transformer (MViT), optimized with Pareto-Optimal Quantum Dynamic Optimization for Neural Architecture Search, while the fused images are augmented to avoid overfitting and then classify unfused MRI and FDG-PET images obtained from the AD Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets into various stages of AD. The architectural hyperparameters of MViT are optimized using Quantum Dynamic Optimization, which ensures a Pareto-optimal solution. The Peak Signal-to-Noise Ratio (PSNR), the Mean Squared Error (MSE), and the Structured Similarity Indexing Method (SSIM) are used to measure the quality of the fused image. We found that the fused image was consistent in all metrics, having 0.64 SIMM, 35.60 PSNR, and 0.21 MSE for the FDG-PET image. In the classification of AD vs. cognitive normal (CN), AD vs. mild cognitive impairment (MCI), and CN vs. MCI, the precision of the proposed method is 94.73%, 92.98% and 89.36%, respectively. The sensitivity is 90. 70%, 90. 70%, and 90. 91% while the specificity is 100%, 100%, and 85. 71%, respectively, in the ADNI MRI test data.
英文关键词Alzheimer's disease Pareto optimization Deep learning Classification Image fusion Multimodal
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001279174900001
WOS关键词COUPLED NEURAL-NETWORK ; FUSION ; CLASSIFICATION
WOS类目Multidisciplinary Sciences
WOS研究方向Science & Technology - Other Topics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/404043
推荐引用方式
GB/T 7714
Odusami, Modupe,Damasevicius, Robertas,Milieskaite-Belousoviene, Egle,et al. Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization[J],2024,10(15).
APA Odusami, Modupe,Damasevicius, Robertas,Milieskaite-Belousoviene, Egle,&Maskeliu over bar nas, Rytis.(2024).Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization.HELIYON,10(15).
MLA Odusami, Modupe,et al."Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization".HELIYON 10.15(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Odusami, Modupe]的文章
[Damasevicius, Robertas]的文章
[Milieskaite-Belousoviene, Egle]的文章
百度学术
百度学术中相似的文章
[Odusami, Modupe]的文章
[Damasevicius, Robertas]的文章
[Milieskaite-Belousoviene, Egle]的文章
必应学术
必应学术中相似的文章
[Odusami, Modupe]的文章
[Damasevicius, Robertas]的文章
[Milieskaite-Belousoviene, Egle]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。