Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.heliyon.2024.e34402 |
Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization | |
Odusami, Modupe; Damasevicius, Robertas; Milieskaite-Belousoviene, Egle; Maskeliu over bar nas, Rytis | |
通讯作者 | bar Nas, RMO |
来源期刊 | HELIYON
![]() |
EISSN | 2405-8440 |
出版年 | 2024 |
卷号 | 10期号:15 |
英文摘要 | The threat posed by Alzheimer's disease (AD) to human health has grown significantly. However, the precise diagnosis and classification of AD stages remain a challenge. Neuroimaging methods such as structural magnetic resonance imaging (sMRI) and fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to diagnose and categorize AD. However, feature selection approaches that are frequently used to extract additional data from multimodal imaging are prone to errors. This paper suggests using a static pulse-coupled neural network and a Laplacian pyramid to combine sMRI and FDG-PET data. After that, the fused images are used to train the Mobile Vision Transformer (MViT), optimized with Pareto-Optimal Quantum Dynamic Optimization for Neural Architecture Search, while the fused images are augmented to avoid overfitting and then classify unfused MRI and FDG-PET images obtained from the AD Neuroimaging Initiative (ADNI) and Open Access Series of Imaging Studies (OASIS) datasets into various stages of AD. The architectural hyperparameters of MViT are optimized using Quantum Dynamic Optimization, which ensures a Pareto-optimal solution. The Peak Signal-to-Noise Ratio (PSNR), the Mean Squared Error (MSE), and the Structured Similarity Indexing Method (SSIM) are used to measure the quality of the fused image. We found that the fused image was consistent in all metrics, having 0.64 SIMM, 35.60 PSNR, and 0.21 MSE for the FDG-PET image. In the classification of AD vs. cognitive normal (CN), AD vs. mild cognitive impairment (MCI), and CN vs. MCI, the precision of the proposed method is 94.73%, 92.98% and 89.36%, respectively. The sensitivity is 90. 70%, 90. 70%, and 90. 91% while the specificity is 100%, 100%, and 85. 71%, respectively, in the ADNI MRI test data. |
英文关键词 | Alzheimer's disease Pareto optimization Deep learning Classification Image fusion Multimodal |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:001279174900001 |
WOS关键词 | COUPLED NEURAL-NETWORK ; FUSION ; CLASSIFICATION |
WOS类目 | Multidisciplinary Sciences |
WOS研究方向 | Science & Technology - Other Topics |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/404043 |
推荐引用方式 GB/T 7714 | Odusami, Modupe,Damasevicius, Robertas,Milieskaite-Belousoviene, Egle,et al. Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization[J],2024,10(15). |
APA | Odusami, Modupe,Damasevicius, Robertas,Milieskaite-Belousoviene, Egle,&Maskeliu over bar nas, Rytis.(2024).Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization.HELIYON,10(15). |
MLA | Odusami, Modupe,et al."Alzheimer's disease stage recognition from MRI and PET imaging data using Pareto-optimal quantum dynamic optimization".HELIYON 10.15(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。