Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3389/fpls.2024.1358965 |
UAV hyperspectral analysis of secondary salinization in arid oasis cotton fields: effects of FOD feature selection and SOA-RF | |
Wang, Zeyuan; Ding, Jianli![]() | |
通讯作者 | Ding, JL |
来源期刊 | FRONTIERS IN PLANT SCIENCE
![]() |
ISSN | 1664-462X |
出版年 | 2024 |
卷号 | 15 |
英文摘要 | Secondary salinization is a crucial constraint on agricultural progress in arid regions. The specific mulching irrigation technique not only exacerbates secondary salinization but also complicates field-scale soil salinity monitoring. UAV hyperspectral remote sensing offers a monitoring method that is high-precision, high-efficiency, and short-cycle. In this study, UAV hyperspectral images were used to derive one-dimensional, textural, and three-dimensional feature variables using Competitive adaptive reweighted sampling (CARS), Gray-Level Co-occurrence Matrix (GLCM), Boruta Feature Selection (Boruta), and Brightness-Color-Index (BCI) with Fractional-order differentiation (FOD) processing. Additionally, three modeling strategies were developed (Strategy 1 involves constructing the model solely with the 20 single-band variable inputs screened by the CARS algorithm. In Strategy 2, 25 texture features augment Strategy 1, resulting in 45 feature variables for model construction. Strategy 3, building upon Strategy 2, incorporates six triple-band indices, totaling 51 variables used in the model's construction) and integrated with the Seagull Optimization Algorithm for Random Forest (SOA-RF) models to predict soil electrical conductivity (EC) and delineate spatial distribution. The results demonstrated that fractional order differentiation highlights spectral features in noisy spectra, and different orders of differentiation reveal different hidden information. The correlation between soil EC and spectra varies with the order. 1.9th order differentiation is proved to be the best order for constructing one-dimensional indices; although the addition of texture features slightly improves the accuracy of the model, the integration of the three-waveband indices significantly improves the accuracy of the estimation, with an R2 of 0.9476. In contrast to the conventional RF model, the SOA-RF algorithm optimizes its parameters thereby significantly improving the accuracy and model stability. The optimal soil salinity prediction model proposed in this study can accurately, non-invasively and rapidly identify excessive salt accumulation in drip irrigation under membrane. It is of great significance to improve the growing conditions of cotton, increase the cotton yield, and promote the sustainable development of Xinjiang's agricultural economy, and also provides a reference for the prevention and control of regional soil salinization. |
英文关键词 | precision agriculture UAV hyperspectral fractional-order differentiation feature variables SOA-RF |
类型 | Article |
语种 | 英语 |
开放获取类型 | Green Published |
收录类别 | SCI-E |
WOS记录号 | WOS:001174920300001 |
WOS关键词 | GOSSYPIUM-HIRSUTUM L. ; SOIL ; CLASSIFICATION ; WATER |
WOS类目 | Plant Sciences |
WOS研究方向 | Plant Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/403878 |
推荐引用方式 GB/T 7714 | Wang, Zeyuan,Ding, Jianli,Tan, Jiao,et al. UAV hyperspectral analysis of secondary salinization in arid oasis cotton fields: effects of FOD feature selection and SOA-RF[J],2024,15. |
APA | Wang, Zeyuan.,Ding, Jianli.,Tan, Jiao.,Liu, Junhao.,Zhang, Tingting.,...&Meng, Shanshan.(2024).UAV hyperspectral analysis of secondary salinization in arid oasis cotton fields: effects of FOD feature selection and SOA-RF.FRONTIERS IN PLANT SCIENCE,15. |
MLA | Wang, Zeyuan,et al."UAV hyperspectral analysis of secondary salinization in arid oasis cotton fields: effects of FOD feature selection and SOA-RF".FRONTIERS IN PLANT SCIENCE 15(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。