Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3389/fpls.2023.1298946 |
High-value crops' embedded groundnut-based production systems vis-à-vis system-mode integrated nutrient management: long-term impacts on system productivity, system profitability, and soil bio-fertility indicators in semi-arid climate | |
Bana, Ram Swaroop; Choudhary, Anil K.; Nirmal, Ravi C.; Kuri, Bhola Ram; Sangwan, Seema; Godara, Samarth; Bansal, Ruchi; Singh, Deepak; Rana, D. S. | |
通讯作者 | Choudhary, AK |
来源期刊 | FRONTIERS IN PLANT SCIENCE
![]() |
ISSN | 1664-462X |
出版年 | 2024 |
卷号 | 14 |
英文摘要 | The current study identified two new climate-resilient groundnut-based cropping systems (GBCSs), viz., groundnut-fenugreek cropping system (GFCS) and groundnut-marigold cropping system (GMCS), with appropriate system-mode bio-compost embedded nutrient management schedules (SBINMSs) for semi-arid South Asia. This 5-year field study revealed that the GMCS along with leaf compost (LC) + 50% recommended dose of fertilizers (RDF50) in wet-season crop (groundnut) and 100% RDF (RDF100) in winter-season crop (marigold) exhibited the highest system productivity (5.13-5.99 t/ha), system profits (US$ 1,767-2,688/ha), and soil fertility (available NPK). Among SBINMSs, the application of 5 t/ha leaf and cow dung mixture compost (LCMC) with RDF50 showed the highest increase (0.41%) in soil organic carbon (SOC) followed by LC at 5 t/ha with RDF50 and RDF100. Legume-legume rotation (GFCS) had significantly higher soil microbial biomass carbon (SMBC) and soil microbial biomass nitrogen (SMBN) than legume-non-legume rotations (groundnut-wheat cropping system (GWCS) and GMCS). Among SBINMSs, the highest SMBC (201 mu g/g dry soil) and SMBN (27.9 mu g/g dry soil) were obtained when LCMC+RDF50 was applied to groundnut. The SMBC : SMBN ratio was the highest in the GWCS. LC+RDF50 exhibited the highest SMBC : SOC ratio (51.6). The largest increase in soil enzymatic activities was observed under LCMC+RDF50. Overall, the GMCS with LC+RDF50 in the wet season and RDF100 in the winter season proved highly productive and remunerative with better soil bio-fertility. SBINMSs saved chemical fertilizers by similar to 25%' in addition to enhanced system productivity and system profits across GBCSs in semi-arid regions of South Asia. Future research needs to focus on studying the potential of diversified production systems on water and environmental footprints, carbon dynamics, and energy productivity under semi-arid ecologies. |
英文关键词 | groundnut-based cropping systems nutrient management organic manures system-productivity high-value crops soil bio-fertility |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:001144350000001 |
WOS关键词 | MICROBIAL BIOMASS ; CROPPING SYSTEM ; USE EFFICIENCY ; INORGANIC FERTILIZERS ; FUNCTIONAL DIVERSITY ; EXTRACTION METHOD ; GRAIN LEGUME ; QUALITY ; HEALTH ; SUSTAINABILITY |
WOS类目 | Plant Sciences |
WOS研究方向 | Plant Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/403858 |
推荐引用方式 GB/T 7714 | Bana, Ram Swaroop,Choudhary, Anil K.,Nirmal, Ravi C.,et al. High-value crops' embedded groundnut-based production systems vis-à-vis system-mode integrated nutrient management: long-term impacts on system productivity, system profitability, and soil bio-fertility indicators in semi-arid climate[J],2024,14. |
APA | Bana, Ram Swaroop.,Choudhary, Anil K..,Nirmal, Ravi C..,Kuri, Bhola Ram.,Sangwan, Seema.,...&Rana, D. S..(2024).High-value crops' embedded groundnut-based production systems vis-à-vis system-mode integrated nutrient management: long-term impacts on system productivity, system profitability, and soil bio-fertility indicators in semi-arid climate.FRONTIERS IN PLANT SCIENCE,14. |
MLA | Bana, Ram Swaroop,et al."High-value crops' embedded groundnut-based production systems vis-à-vis system-mode integrated nutrient management: long-term impacts on system productivity, system profitability, and soil bio-fertility indicators in semi-arid climate".FRONTIERS IN PLANT SCIENCE 14(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。