Arid
DOI10.1016/j.eswa.2023.122211
Spatio-temporal modeling of climate change impacts on drought forecast using Generative Adversarial Network: A case study in Africa
Ferchichi, Ahlem; Chihaoui, Mejda; Ferchichi, Aya
通讯作者Ferchichi, A
来源期刊EXPERT SYSTEMS WITH APPLICATIONS
ISSN0957-4174
EISSN1873-6793
出版年2024
卷号238
英文摘要Drought is an extreme weather event, affecting the ecological conditions of vegetation and agricultural productivity, poses challenges for millions of people in Africa, and its long-term prediction is definitely important. Accurate drought forecasting is a challenging subject due to its dependence on different climatic variables, and its spatio-temporal, nonstationary and non-linear characteristics. In particular, Deep Learning technologies have achieved excellent results in long-term time series forecasting. Thus, this study proposes a Generative Adversarial Networks (GAN) model which combines Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) network for drought forecasting in Africa. This approach focuses on how the future spatio-temporal variations of drought will vary under climate change effects using multivariate remote sensing data over Africa from 1999-2022. We considered hydrological, meteorological and vegetation spectral factors for GAN as model input variables. The study assessed agricultural drought using the soil moisture index (SMI) as a response parameter. Experimental results confirmed the reliability of the proposed model for forecasting agricultural drought. Compared to existing deep learning models, the proposed GAN based CNN-LSTM model achieved the lowest RMSE, MAPE, and MAE values of 1.008, 0.009, and 0.739, respectively. The findings demonstrate that the proposed model can be used as a reliable forecasting method that helps to estimate drought in arid and semi-arid regions.
英文关键词GAN Spatio-temporal modeling Climate change impacts Drought forecasting Multivariate time series Remote sensing data Africa
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001105381700001
WOS关键词AREAS
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science
WOS研究方向Computer Science ; Engineering ; Operations Research & Management Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/403712
推荐引用方式
GB/T 7714
Ferchichi, Ahlem,Chihaoui, Mejda,Ferchichi, Aya. Spatio-temporal modeling of climate change impacts on drought forecast using Generative Adversarial Network: A case study in Africa[J],2024,238.
APA Ferchichi, Ahlem,Chihaoui, Mejda,&Ferchichi, Aya.(2024).Spatio-temporal modeling of climate change impacts on drought forecast using Generative Adversarial Network: A case study in Africa.EXPERT SYSTEMS WITH APPLICATIONS,238.
MLA Ferchichi, Ahlem,et al."Spatio-temporal modeling of climate change impacts on drought forecast using Generative Adversarial Network: A case study in Africa".EXPERT SYSTEMS WITH APPLICATIONS 238(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ferchichi, Ahlem]的文章
[Chihaoui, Mejda]的文章
[Ferchichi, Aya]的文章
百度学术
百度学术中相似的文章
[Ferchichi, Ahlem]的文章
[Chihaoui, Mejda]的文章
[Ferchichi, Aya]的文章
必应学术
必应学术中相似的文章
[Ferchichi, Ahlem]的文章
[Chihaoui, Mejda]的文章
[Ferchichi, Aya]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。