Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1016/j.eja.2024.127323 |
Prediction of soil organic matter using Landsat 8 data and machine learning algorithms in typical karst cropland in China | |
Chang, Naijie; Chen, Di | |
通讯作者 | Chen, D |
来源期刊 | EUROPEAN JOURNAL OF AGRONOMY
![]() |
ISSN | 1161-0301 |
EISSN | 1873-7331 |
出版年 | 2024 |
卷号 | 160 |
英文摘要 | Soil organic matter (SOM) is crucial for karst ecosystems, affecting cropland health, climate change mitigation, and rocky desertification control. However, there are limited research on cropland SOM prediction in karst areas with complex topography and diverse microclimates. Here, we compared the performance of four machine learning algorithms-random forest (RF), support vector regression (SVR), multilayer perceptron regression (MLP), and gradient boosting regression trees (GBRT)-for predicting cropland SOM in a typical karst landform area in 2019. Our results indicated that the GBRT model achieved the highest prediction accuracy with an R2 2 of 0.69, MAE of 2.19 g/kg, RMSE of 3.37 g/kg, and LCCC of 0.82. Using the GBRT model and spatial data on climate, topography, and remote sensing, we predicted SOM for each 30 m x 30 m grid cell. The analysis revealed higher SOM content in the northeastern and southwestern regions and lower content in the central area, ranging from 13.95 to 47.81 g/kg, with an average of 27.16 g/kg. Lime soil had the highest SOM content, while purple soil had the lowest. Paddy fields showed significantly higher SOM than dry land. Over the past 40 years, SOM content has slightly increased, while its spatial distribution has remained stable. |
英文关键词 | Digital soil mapping Soil organic matter Machine learning Landsat 8 Karst cropland |
类型 | Article |
语种 | 英语 |
收录类别 | SCI-E |
WOS记录号 | WOS:001303728500001 |
WOS关键词 | CARBON STOCKS ; DYNAMICS ; PATTERNS |
WOS类目 | Agronomy |
WOS研究方向 | Agriculture |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/403699 |
推荐引用方式 GB/T 7714 | Chang, Naijie,Chen, Di. Prediction of soil organic matter using Landsat 8 data and machine learning algorithms in typical karst cropland in China[J],2024,160. |
APA | Chang, Naijie,&Chen, Di.(2024).Prediction of soil organic matter using Landsat 8 data and machine learning algorithms in typical karst cropland in China.EUROPEAN JOURNAL OF AGRONOMY,160. |
MLA | Chang, Naijie,et al."Prediction of soil organic matter using Landsat 8 data and machine learning algorithms in typical karst cropland in China".EUROPEAN JOURNAL OF AGRONOMY 160(2024). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Chang, Naijie]的文章 |
[Chen, Di]的文章 |
百度学术 |
百度学术中相似的文章 |
[Chang, Naijie]的文章 |
[Chen, Di]的文章 |
必应学术 |
必应学术中相似的文章 |
[Chang, Naijie]的文章 |
[Chen, Di]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。