Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1007/s00405-023-08424-9 |
Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging | |
Cheong, Ryan Chin Taw; Jawad, Susan; Adams, Ashok; Campion, Thomas; Lim, Zhe Hong; Papachristou, Nikolaos; Unadkat, Samit; Randhawa, Premjit; Joseph, Jonathan; Andrews, Peter; Taylor, Paul; Kunz, Holger | |
通讯作者 | Kunz, H |
来源期刊 | EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY
![]() |
ISSN | 0937-4477 |
EISSN | 1434-4726 |
出版年 | 2024 |
卷号 | 281期号:4页码:2153-2158 |
英文摘要 | PurposeArtificial intelligence (AI) in the form of automated machine learning (AutoML) offers a new potential breakthrough to overcome the barrier of entry for non-technically trained physicians. A Clinical Decision Support System (CDSS) for screening purposes using AutoML could be beneficial to ease the clinical burden in the radiological workflow for paranasal sinus diseases.MethodsThe main target of this work was the usage of automated evaluation of model performance and the feasibility of the Vertex AI image classification model on the Google Cloud AutoML platform to be trained to automatically classify the presence or absence of sinonasal disease. The dataset is a consensus labelled Open Access Series of Imaging Studies (OASIS-3) MRI head dataset by three specialised head and neck consultant radiologists. A total of 1313 unique non-TSE T2w MRI head sessions were used from the OASIS-3 repository.ResultsThe best-performing image classification model achieved a precision of 0.928. Demonstrating the feasibility and high performance of the Vertex AI image classification model to automatically detect the presence or absence of sinonasal disease on MRI.ConclusionAutoML allows for potential deployment to optimise diagnostic radiology workflows and lay the foundation for further AI research in radiology and otolaryngology. The usage of AutoML could serve as a formal requirement for a feasibility study. |
英文关键词 | AutoML Automated machine learning Paranasal sinus disease MRI Artificial intelligence |
类型 | Article |
语种 | 英语 |
开放获取类型 | hybrid |
收录类别 | SCI-E |
WOS记录号 | WOS:001139440100003 |
WOS关键词 | ARTIFICIAL-INTELLIGENCE |
WOS类目 | Otorhinolaryngology |
WOS研究方向 | Otorhinolaryngology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/403688 |
推荐引用方式 GB/T 7714 | Cheong, Ryan Chin Taw,Jawad, Susan,Adams, Ashok,et al. Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging[J],2024,281(4):2153-2158. |
APA | Cheong, Ryan Chin Taw.,Jawad, Susan.,Adams, Ashok.,Campion, Thomas.,Lim, Zhe Hong.,...&Kunz, Holger.(2024).Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging.EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY,281(4),2153-2158. |
MLA | Cheong, Ryan Chin Taw,et al."Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging".EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY 281.4(2024):2153-2158. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。