Arid
DOI10.1007/s00405-023-08424-9
Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging
Cheong, Ryan Chin Taw; Jawad, Susan; Adams, Ashok; Campion, Thomas; Lim, Zhe Hong; Papachristou, Nikolaos; Unadkat, Samit; Randhawa, Premjit; Joseph, Jonathan; Andrews, Peter; Taylor, Paul; Kunz, Holger
通讯作者Kunz, H
来源期刊EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY
ISSN0937-4477
EISSN1434-4726
出版年2024
卷号281期号:4页码:2153-2158
英文摘要PurposeArtificial intelligence (AI) in the form of automated machine learning (AutoML) offers a new potential breakthrough to overcome the barrier of entry for non-technically trained physicians. A Clinical Decision Support System (CDSS) for screening purposes using AutoML could be beneficial to ease the clinical burden in the radiological workflow for paranasal sinus diseases.MethodsThe main target of this work was the usage of automated evaluation of model performance and the feasibility of the Vertex AI image classification model on the Google Cloud AutoML platform to be trained to automatically classify the presence or absence of sinonasal disease. The dataset is a consensus labelled Open Access Series of Imaging Studies (OASIS-3) MRI head dataset by three specialised head and neck consultant radiologists. A total of 1313 unique non-TSE T2w MRI head sessions were used from the OASIS-3 repository.ResultsThe best-performing image classification model achieved a precision of 0.928. Demonstrating the feasibility and high performance of the Vertex AI image classification model to automatically detect the presence or absence of sinonasal disease on MRI.ConclusionAutoML allows for potential deployment to optimise diagnostic radiology workflows and lay the foundation for further AI research in radiology and otolaryngology. The usage of AutoML could serve as a formal requirement for a feasibility study.
英文关键词AutoML Automated machine learning Paranasal sinus disease MRI Artificial intelligence
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:001139440100003
WOS关键词ARTIFICIAL-INTELLIGENCE
WOS类目Otorhinolaryngology
WOS研究方向Otorhinolaryngology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/403688
推荐引用方式
GB/T 7714
Cheong, Ryan Chin Taw,Jawad, Susan,Adams, Ashok,et al. Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging[J],2024,281(4):2153-2158.
APA Cheong, Ryan Chin Taw.,Jawad, Susan.,Adams, Ashok.,Campion, Thomas.,Lim, Zhe Hong.,...&Kunz, Holger.(2024).Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging.EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY,281(4),2153-2158.
MLA Cheong, Ryan Chin Taw,et al."Enhancing paranasal sinus disease detection with AutoML: efficient AI development and evaluation via magnetic resonance imaging".EUROPEAN ARCHIVES OF OTO-RHINO-LARYNGOLOGY 281.4(2024):2153-2158.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Cheong, Ryan Chin Taw]的文章
[Jawad, Susan]的文章
[Adams, Ashok]的文章
百度学术
百度学术中相似的文章
[Cheong, Ryan Chin Taw]的文章
[Jawad, Susan]的文章
[Adams, Ashok]的文章
必应学术
必应学术中相似的文章
[Cheong, Ryan Chin Taw]的文章
[Jawad, Susan]的文章
[Adams, Ashok]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。