Arid
DOI10.1016/j.ecolind.2024.112428
High resolution remote sensing recognition of elm sparse forest via deep-learning-based semantic segmentation
Liu, Hao; Sun, Bin; Gao, Zhihai; Chen, Zhulin; Zhu, Zhongzheng
通讯作者Sun, B
来源期刊ECOLOGICAL INDICATORS
ISSN1470-160X
EISSN1872-7034
出版年2024
卷号166
英文摘要Elm (Ulmus pumila L.) sparse forest plays an vital role in maintaining local ecological stability and security in the Otingdag Sandy Land area. Prior studies on elm canopy extraction have predominantly relied on manual parameter configuration, resulting in unsatisfactory levels of generalization. To meet the needs of high-precision and rapid recognition of elm sparse forests in large areas, this study proposed a recognition method for elm sparse forest that orients to high spatial resolution remote sensing imageries, using deep-learning-based semantic segmentation techniques. It can automatically learn features that are conducive to segmenting the canopy of elm trees, and retains good generalization ability on the Gaofen-2 imageries obtained in different regions. First, we constructed a dataset specialized for elm canopy semantic segmentation task, and annotated over 130,000 elm canopies based on Gaofen-2 imageries. In addition, we trained 7 deep-learning semantic segmentation model candidates. Among them, MANet showed the best performance, with its F1-score reaching 81.44%. Lastly, we applied edge detection to the elm canopy coverage area, and automatically extract the elm canopy. The proposed method can provide technical support for the investigation and monitoring of elm sparse forests, while facilitates local desertification prevention efforts in the entire Otingdag Sandy Region.
英文关键词Otingdag Sandy Land Elm Sparse Forest Gaofen-2 Semantic Segmentation Deep Learning
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001284665000001
WOS关键词NETWORK
WOS类目Biodiversity Conservation ; Environmental Sciences
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/403426
推荐引用方式
GB/T 7714
Liu, Hao,Sun, Bin,Gao, Zhihai,et al. High resolution remote sensing recognition of elm sparse forest via deep-learning-based semantic segmentation[J],2024,166.
APA Liu, Hao,Sun, Bin,Gao, Zhihai,Chen, Zhulin,&Zhu, Zhongzheng.(2024).High resolution remote sensing recognition of elm sparse forest via deep-learning-based semantic segmentation.ECOLOGICAL INDICATORS,166.
MLA Liu, Hao,et al."High resolution remote sensing recognition of elm sparse forest via deep-learning-based semantic segmentation".ECOLOGICAL INDICATORS 166(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Hao]的文章
[Sun, Bin]的文章
[Gao, Zhihai]的文章
百度学术
百度学术中相似的文章
[Liu, Hao]的文章
[Sun, Bin]的文章
[Gao, Zhihai]的文章
必应学术
必应学术中相似的文章
[Liu, Hao]的文章
[Sun, Bin]的文章
[Gao, Zhihai]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。