Arid
DOI10.1016/j.ecolind.2024.112516
Desert oasis vegetation information extraction by PLANET and unmanned aerial vehicle image fusion
Guo, Yuchuan; Wang, Ning; Wei, Xuan; Zhou, Mingtong; Wang, Huijing; Bai, Yunbao
通讯作者Guo, YC
来源期刊ECOLOGICAL INDICATORS
ISSN1470-160X
EISSN1872-7034
出版年2024
卷号166
英文摘要Sparse vegetation is a key factor in maintaining the health and sustainability of oasis ecosystems under extreme drought conditions. Combining the advantages of both satellites and drones, using image processing and machine learning technology, it can efficiently and accurately extract information on the vegetation of desert oases, providing a scientific basis for ecological monitoring and management. Therefore, in this study, the Dariyabui natural oasis in the hinterland of the Taklamakan Desert, China, was used as the study area to fuse PLANET and UAV images to screen 19 feature factors from different data sources. The machine learning binary classification model was evaluated based on the overall accuracy (OA, %), kappa, balanced accuracy (BA, %), F1_score (F1, %), and Area Under Curve (AUC) values. The results were validated using aerial imaging data from different months. The results show that (1) the primary feature factors for extracting sparse ground vegetation information in a desert oasis include the soil-adjusted vegetation index (SAVI); modified soil-adjusted vegetation index (MSAVI); optimized soil-adjusted vegetation index (OSAVI); and the mean, entropy, contrast, homogeneity, and digital surface models (DSM). (2) The evaluation indices of the fused images in the vegetation information extraction were better than those of the original satellite images; the difference in the extraction effect with the original UAV images was not significant. (3) The random forest (RF) algorithm achieved the best classification accuracy in extracting sparse vegetation information (Kappa = 0.87, OA = 94.12 %, BA = 93.53 %, F1 = 92.13 %, and AUC = 0.967).
英文关键词Oasis sparse vegetation PLANET satellite remote sensing UAV remote sensing Image fusion Machine learning dichotomous classification
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:001300168900001
WOS关键词OBJECT-BASED CLASSIFICATION ; RANDOM FOREST ; LAND-COVER ; INDEXES ; ALGORITHMS ; PERFORMANCE
WOS类目Biodiversity Conservation ; Environmental Sciences
WOS研究方向Biodiversity & Conservation ; Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/403421
推荐引用方式
GB/T 7714
Guo, Yuchuan,Wang, Ning,Wei, Xuan,et al. Desert oasis vegetation information extraction by PLANET and unmanned aerial vehicle image fusion[J],2024,166.
APA Guo, Yuchuan,Wang, Ning,Wei, Xuan,Zhou, Mingtong,Wang, Huijing,&Bai, Yunbao.(2024).Desert oasis vegetation information extraction by PLANET and unmanned aerial vehicle image fusion.ECOLOGICAL INDICATORS,166.
MLA Guo, Yuchuan,et al."Desert oasis vegetation information extraction by PLANET and unmanned aerial vehicle image fusion".ECOLOGICAL INDICATORS 166(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, Yuchuan]的文章
[Wang, Ning]的文章
[Wei, Xuan]的文章
百度学术
百度学术中相似的文章
[Guo, Yuchuan]的文章
[Wang, Ning]的文章
[Wei, Xuan]的文章
必应学术
必应学术中相似的文章
[Guo, Yuchuan]的文章
[Wang, Ning]的文章
[Wei, Xuan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。