Arid
DOI10.1016/j.crm.2024.100630
Assessment and prediction of meteorological drought using machine learning algorithms and climate data
En-Nagre, Khalid; Aqnouy, Mourad; Ouarka, Ayoub; Naqvi, Syed Ali Asad; Bouizrou, Ismail; El Messari, Jamal Eddine Stitou; Tariq, Aqil; Soufan, Walid; Li, Wenzhao; El-Askary, Hesham
通讯作者Tariq, A
来源期刊CLIMATE RISK MANAGEMENT
ISSN2212-0963
出版年2024
卷号45
英文摘要Monitoring drought in semi-arid regions due to climate change is of paramount importance. This study, conducted in Morocco's Upper Draa Basin (UDB), analyzed data spanning from 1980 to 2019, focusing on the calculation of drought indices, specifically the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at multiple timescales (1, 3, 9, 12 months). Trends were assessed using statistical methods such as the MannKendall test and the Sen's Slope estimator. Four significant machine learning (ML) algorithms, including Random Forest, Voting Regressor, AdaBoost Regressor, and K-Nearest Neighbors Regressor, were evaluated to predict the SPEI values for both three and 12-month periods. The algorithms' performance was measured using statistical indices. The study revealed that drought distribution within the UDB is not uniform, with a discernible decreasing trend in SPEI values. Notably, the four ML algorithms effectively predicted SPEI values for the specified periods. Random Forest, Voting Regressor, and AdaBoost demonstrated the highest Nash-Sutcliffe Efficiency (NSE) values, ranging from 0.74 to 0.93. In contrast, the K-Nearest Neighbors algorithm produced values within the range of 0.44 to 0.84. These research findings have the potential to provide valuable insights for water resource management experts and policymakers. However, it is imperative to enhance data collection methodologies and expand the distribution of measurement sites to improve data representativeness and reduce errors associated with local variations.
英文关键词Drought Machine learning Upper Draa Random Forest SPEI
类型Article
语种英语
开放获取类型gold
收录类别SCI-E ; SSCI
WOS记录号WOS:001283934000001
WOS关键词MANN-KENDALL ; HIGH ATLAS ; PRECIPITATION ; REGRESSION ; BOOTSTRAP ; COVER ; TESTS ; SCALE ; SPEI
WOS类目Environmental Sciences ; Environmental Studies ; Meteorology & Atmospheric Sciences
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/403210
推荐引用方式
GB/T 7714
En-Nagre, Khalid,Aqnouy, Mourad,Ouarka, Ayoub,et al. Assessment and prediction of meteorological drought using machine learning algorithms and climate data[J],2024,45.
APA En-Nagre, Khalid.,Aqnouy, Mourad.,Ouarka, Ayoub.,Naqvi, Syed Ali Asad.,Bouizrou, Ismail.,...&El-Askary, Hesham.(2024).Assessment and prediction of meteorological drought using machine learning algorithms and climate data.CLIMATE RISK MANAGEMENT,45.
MLA En-Nagre, Khalid,et al."Assessment and prediction of meteorological drought using machine learning algorithms and climate data".CLIMATE RISK MANAGEMENT 45(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[En-Nagre, Khalid]的文章
[Aqnouy, Mourad]的文章
[Ouarka, Ayoub]的文章
百度学术
百度学术中相似的文章
[En-Nagre, Khalid]的文章
[Aqnouy, Mourad]的文章
[Ouarka, Ayoub]的文章
必应学术
必应学术中相似的文章
[En-Nagre, Khalid]的文章
[Aqnouy, Mourad]的文章
[Ouarka, Ayoub]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。