Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.1175/BAMS-D-23-0001.1 |
Cryosphere-Hydrometeorology Observations for a Water Tower Unit on the Tibetan Plateau Using the BeiDou-3 Navigation Satellite System | |
Liu, Ruishun; Wang, Lei; Wang, Zhongjing; Li, Xiuping; Chen, Deliang; Zhou, Jing; Qi, Jia; Wang, Yuanwei; Chai, Chenhao; Wang, Guangpeng; Xiao, Haibang | |
通讯作者 | Wang, L |
来源期刊 | BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY
![]() |
ISSN | 0003-0007 |
EISSN | 1520-0477 |
出版年 | 2024 |
卷号 | 105期号:3页码:E442-E465 |
英文摘要 | Life and civilization in arid regions depend on the availability of freshwater. Arid alpine river basins, where hydrological processes are highly sensitive to rapid warming, act as vital water towers for lowland oases. However, scientific understanding of precipitation variability and related cryosphere-hydrology processes is extremely limited because of the scarcity of in situ observations. The upper Danghe River basin (UDB; similar to 14,000 km2) is an arid and westerly dominated basin on the northeastern Tibetan Plateau and is the water source for the Dunhuang Oasis in China. We have established a comprehensive cryosphere-hydrometeorology observation network in the basin since 2014. At present, the network consists of 21 automatic rain gauges, 22 soil freeze-thaw monitoring stations, 4 automatic weather stations (AWS), and a 50-m gradient meteorological tower with an eddy covariance system. In particular, the 18 sites, located in remote areas without public networks, are equipped with new -generation BeiDou-3 communication terminals that enable the observations to be easily, safely, and reliably read and quality controlled in near-real time from offices in the city or at home. This integrated observation network over the UDB that facilitates the monitoring of cryosphere-hydrology processes, land-atmosphere interactions, and local weather processes. In addition, the observations are helpful for the objective evaluation, and continual improvement, of hydrological models, satellite -retrieval products, and reanalysis datasets. Finally, the network is expected to promote a better understanding of the status and role of water towers in arid zones and to provide basic data support for the sustainable development of the Dunhuang Oasis and the Belt and Road. |
英文关键词 | Watersheds Climate change Hydrometeorology Surface observations Hydrologic models |
类型 | Article |
语种 | 英语 |
开放获取类型 | Bronze |
收录类别 | SCI-E |
WOS记录号 | WOS:001183436900001 |
WOS关键词 | CLIMATE-CHANGE ; HYDROLOGICAL RESPONSE ; PRECIPITATION ; PERFORMANCE ; BASIN |
WOS类目 | Meteorology & Atmospheric Sciences |
WOS研究方向 | Meteorology & Atmospheric Sciences |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/403097 |
推荐引用方式 GB/T 7714 | Liu, Ruishun,Wang, Lei,Wang, Zhongjing,et al. Cryosphere-Hydrometeorology Observations for a Water Tower Unit on the Tibetan Plateau Using the BeiDou-3 Navigation Satellite System[J],2024,105(3):E442-E465. |
APA | Liu, Ruishun.,Wang, Lei.,Wang, Zhongjing.,Li, Xiuping.,Chen, Deliang.,...&Xiao, Haibang.(2024).Cryosphere-Hydrometeorology Observations for a Water Tower Unit on the Tibetan Plateau Using the BeiDou-3 Navigation Satellite System.BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY,105(3),E442-E465. |
MLA | Liu, Ruishun,et al."Cryosphere-Hydrometeorology Observations for a Water Tower Unit on the Tibetan Plateau Using the BeiDou-3 Navigation Satellite System".BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 105.3(2024):E442-E465. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。