Arid
DOI10.1093/bib/bbae123
Graph-pMHC: graph neural network approach to MHC class II peptide presentation and antibody immunogenicity
Thrift, William John; Perera, Jason; Cohen, Sivan; Lounsbury, Nicolas W.; Gurung, Hem R.; Rose, Christopher M.; Chen, Jieming; Jhunjhunwala, Suchit; Liu, Kai
通讯作者Liu, K
来源期刊BRIEFINGS IN BIOINFORMATICS
ISSN1467-5463
EISSN1477-4054
出版年2024
卷号25期号:3
英文摘要Antigen presentation on MHC class II (pMHCII presentation) plays an essential role in the adaptive immune response to extracellular pathogens and cancerous cells. But it can also reduce the efficacy of large-molecule drugs by triggering an anti-drug response. Significant progress has been made in pMHCII presentation modeling due to the collection of large-scale pMHC mass spectrometry datasets (ligandomes) and advances in machine learning. Here, we develop graph-pMHC, a graph neural network approach to predict pMHCII presentation. We derive adjacency matrices for pMHCII using Alphafold2-multimer and address the peptide-MHC binding groove alignment problem with a simple graph enumeration strategy. We demonstrate that graph-pMHC dramatically outperforms methods with suboptimal inductive biases, such as the multilayer-perceptron-based NetMHCIIpan-4.0 (+20.17% absolute average precision). Finally, we create an antibody drug immunogenicity dataset from clinical trial data and develop a method for measuring anti-antibody immunogenicity risk using pMHCII presentation models. Our model increases receiver operating characteristic curve (ROC)-area under the ROC curve (AUC) by 2.57% compared to just filtering peptides by hits in OASis alone for predicting antibody drug immunogenicity.
英文关键词graph neural networks pMHC-II anti-drug antibody immunogenicity prediction deep learning
类型Article
语种英语
开放获取类型Green Published, Green Submitted, hybrid
收录类别SCI-E
WOS记录号WOS:001193845100007
WOS关键词ANTIGEN PRESENTATION ; HIGH-THROUGHPUT ; HLA-DP ; PREDICTION ; BINDING
WOS类目Biochemical Research Methods ; Mathematical & Computational Biology
WOS研究方向Biochemistry & Molecular Biology ; Mathematical & Computational Biology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/403080
推荐引用方式
GB/T 7714
Thrift, William John,Perera, Jason,Cohen, Sivan,et al. Graph-pMHC: graph neural network approach to MHC class II peptide presentation and antibody immunogenicity[J],2024,25(3).
APA Thrift, William John.,Perera, Jason.,Cohen, Sivan.,Lounsbury, Nicolas W..,Gurung, Hem R..,...&Liu, Kai.(2024).Graph-pMHC: graph neural network approach to MHC class II peptide presentation and antibody immunogenicity.BRIEFINGS IN BIOINFORMATICS,25(3).
MLA Thrift, William John,et al."Graph-pMHC: graph neural network approach to MHC class II peptide presentation and antibody immunogenicity".BRIEFINGS IN BIOINFORMATICS 25.3(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Thrift, William John]的文章
[Perera, Jason]的文章
[Cohen, Sivan]的文章
百度学术
百度学术中相似的文章
[Thrift, William John]的文章
[Perera, Jason]的文章
[Cohen, Sivan]的文章
必应学术
必应学术中相似的文章
[Thrift, William John]的文章
[Perera, Jason]的文章
[Cohen, Sivan]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。