Arid
DOI10.1016/j.artmed.2024.102774
Multi input-Multi output 3D CNN for dementia severity assessment with incomplete multimodal data
Gravina, Michela; Garcia-Pedrero, Angel; Gonzalo-Martin, Consuelo; Sansone, Carlo; Soda, Paolo
通讯作者Gonzalo-Martín, C
来源期刊ARTIFICIAL INTELLIGENCE IN MEDICINE
ISSN0933-3657
EISSN1873-2860
出版年2024
卷号149
英文摘要Alzheimer's Disease is the most common cause of dementia, whose progression spans in different stages, from very mild cognitive impairment to mild and severe conditions. In clinical trials, Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) are mostly used for the early diagnosis of neurodegenerative disorders since they provide volumetric and metabolic function information of the brain, respectively. In recent years, Deep Learning (DL) has been employed in medical imaging with promising results. Moreover, the use of the deep neural networks, especially Convolutional Neural Networks (CNNs), has also enabled the development of DL-based solutions in domains characterized by the need of leveraging information coming from multiple data sources, raising the Multimodal Deep Learning (MDL). In this paper, we conduct a systematic analysis of MDL approaches for dementia severity assessment exploiting MRI and PET scans. We propose a Multi Input- Multi Output 3D CNN whose training iterations change according to the characteristic of the input as it is able to handle incomplete acquisitions, in which one image modality is missed. Experiments performed on OASIS-3 dataset show the satisfactory results of the implemented network, which outperforms approaches exploiting both single image modality and different MDL fusion techniques.
英文关键词Convolutional neural networks Magnetic resonance images Positron emission tomography Multimodal deep learning
类型Article
语种英语
开放获取类型Green Published, hybrid
收录类别SCI-E
WOS记录号WOS:001178872000001
WOS关键词ALZHEIMERS-DISEASE ; EARLY-DIAGNOSIS
WOS类目Computer Science, Artificial Intelligence ; Engineering, Biomedical ; Medical Informatics
WOS研究方向Computer Science ; Engineering ; Medical Informatics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/402958
推荐引用方式
GB/T 7714
Gravina, Michela,Garcia-Pedrero, Angel,Gonzalo-Martin, Consuelo,et al. Multi input-Multi output 3D CNN for dementia severity assessment with incomplete multimodal data[J],2024,149.
APA Gravina, Michela,Garcia-Pedrero, Angel,Gonzalo-Martin, Consuelo,Sansone, Carlo,&Soda, Paolo.(2024).Multi input-Multi output 3D CNN for dementia severity assessment with incomplete multimodal data.ARTIFICIAL INTELLIGENCE IN MEDICINE,149.
MLA Gravina, Michela,et al."Multi input-Multi output 3D CNN for dementia severity assessment with incomplete multimodal data".ARTIFICIAL INTELLIGENCE IN MEDICINE 149(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gravina, Michela]的文章
[Garcia-Pedrero, Angel]的文章
[Gonzalo-Martin, Consuelo]的文章
百度学术
百度学术中相似的文章
[Gravina, Michela]的文章
[Garcia-Pedrero, Angel]的文章
[Gonzalo-Martin, Consuelo]的文章
必应学术
必应学术中相似的文章
[Gravina, Michela]的文章
[Garcia-Pedrero, Angel]的文章
[Gonzalo-Martin, Consuelo]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。