Arid
DOI10.3390/app14125064
Lithological Discrimination of Khyber Range Using Remote Sensing and Machine Learning Algorithms
Ali, Sajid; Li, Huan; Ali, Asghar; Hassan, Jubril Izge
通讯作者Li, H
来源期刊APPLIED SCIENCES-BASEL
EISSN2076-3417
出版年2024
卷号14期号:12
英文摘要In this study, the satellite data of ASTER and Landsat 8 OLI were used for the discrimination of lithological units covering the Khyber range. Of the 24 tested band combinations, the most suitable include 632 and 468 of ASTER and 754 and 147 of OLI in the RGB sequence. The data were also tested with two conventional machine learning algorithms (MLAs), namely maximum likelihood classification (MLC) and support vector machine (SVM), for lithological mapping. Principal component analysis (PCA), minimum noise fraction (MNF), band ratios, and color composites in combination with available lithological maps and field data were utilized for training sample collection for the MLC and SVM models to classify the lithological units. The accuracy assessment of SVM and MLC was performed using a confusion matrix, which revealed a higher accuracy of 74.8419% and 72.1217% for ASTER and an accuracy of 58.4833% and 60.0257% for OLI, respectively. The results indicate that ASTER imagery is more suitable for lithological discrimination in the study area due to its high spectral resolution in the VNIR to SWIR range. The experiment revealed that the SVM classification offered the highest overall accuracy of nearly 75% and the kappa coefficient value of 0.7 on ASTER data. This demonstrates the effectiveness of SVM classification in exploring lithological mapping in dry to semi-arid regions.
英文关键词remote sensing machine learning SVM MLC lithology ASTER OLI Khyber
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001254436200001
WOS关键词SPACEBORNE THERMAL EMISSION ; CENTRAL ANTI-ATLAS ; OPHIOLITE COMPLEX ; HYDROTHERMAL ALTERATION ; RANDOM FORESTS ; ASTER DATA ; CLASSIFICATION ; AREA ; MINERALS ; DEPOSITS
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/402877
推荐引用方式
GB/T 7714
Ali, Sajid,Li, Huan,Ali, Asghar,et al. Lithological Discrimination of Khyber Range Using Remote Sensing and Machine Learning Algorithms[J],2024,14(12).
APA Ali, Sajid,Li, Huan,Ali, Asghar,&Hassan, Jubril Izge.(2024).Lithological Discrimination of Khyber Range Using Remote Sensing and Machine Learning Algorithms.APPLIED SCIENCES-BASEL,14(12).
MLA Ali, Sajid,et al."Lithological Discrimination of Khyber Range Using Remote Sensing and Machine Learning Algorithms".APPLIED SCIENCES-BASEL 14.12(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ali, Sajid]的文章
[Li, Huan]的文章
[Ali, Asghar]的文章
百度学术
百度学术中相似的文章
[Ali, Sajid]的文章
[Li, Huan]的文章
[Ali, Asghar]的文章
必应学术
必应学术中相似的文章
[Ali, Sajid]的文章
[Li, Huan]的文章
[Ali, Asghar]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。