Arid
DOI10.1016/j.asej.2024.102716
On reliability enhancement of solar PV arrays using hybrid SVR for soiling based on WT and EMD methods
Redekar, Abhijeet; Dhiman, Harsh S.; Deb, Dipankar; Muyeen, S. M.
通讯作者Dhiman, HS
来源期刊AIN SHAMS ENGINEERING JOURNAL
ISSN2090-4479
EISSN2090-4495
出版年2024
卷号15期号:6
英文摘要Solar farms have PV arrays in arid and semi-arid regions where ensuring the system's reliability is paramount and face uncertain events like dust storms. The deposition of random dust patterns over panel arrays is called uneven soiling, which diminishes the power generation of such farms. This paper finds the most suitable hybrid algorithm model, the wavelet transform-based support vector regression variants (WT-SVR) algorithm, and the empirical model decomposition-based support vector regression variants (EMD-SVR) to predict the extent of soiling levels and uncertain events on PV arrays. The soiling dataset is taken from NREL's Soiling Station Number 3 in Imperial County, Calipatria, California, from December 30, 2014, to December 31, 2015. This research tested four SVR variants on soiling data, viz., epsilon SVR, LSSVR, TSVR, and epsilon TSVR, then compared with the benchmark random forest. The hyperparameters for each model are meticulously tuned to enhance the robustness of the trained algorithms. Results reveal that the WT-TSVR model outperforms the WT-SVR model in terms of wavelet transform decomposition by a margin of 91.6%. Similarly, the EMD-TSVR model showcases an 85.7% enhancement in performance over the EMD-SVR model based on empirical mode decomposition. All SVR variants outperform the benchmark model (RF). Furthermore, EMD models exhibit enhanced efficiency in forecasting random events compared to WT, which is attributed to their reduced computational time. This model applies to multi-cleaning agent robots, aligning with recommendations from the state-of-the-art literature.
英文关键词Soiling forecasting Wavelet transform Support vector regression Empirical mode decomposition
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:001267905500001
WOS关键词SUPPORT VECTOR REGRESSION ; DUST ; MODULES ; IMPACT ; SELECTION
WOS类目Engineering, Multidisciplinary
WOS研究方向Engineering
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/402803
推荐引用方式
GB/T 7714
Redekar, Abhijeet,Dhiman, Harsh S.,Deb, Dipankar,et al. On reliability enhancement of solar PV arrays using hybrid SVR for soiling based on WT and EMD methods[J],2024,15(6).
APA Redekar, Abhijeet,Dhiman, Harsh S.,Deb, Dipankar,&Muyeen, S. M..(2024).On reliability enhancement of solar PV arrays using hybrid SVR for soiling based on WT and EMD methods.AIN SHAMS ENGINEERING JOURNAL,15(6).
MLA Redekar, Abhijeet,et al."On reliability enhancement of solar PV arrays using hybrid SVR for soiling based on WT and EMD methods".AIN SHAMS ENGINEERING JOURNAL 15.6(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Redekar, Abhijeet]的文章
[Dhiman, Harsh S.]的文章
[Deb, Dipankar]的文章
百度学术
百度学术中相似的文章
[Redekar, Abhijeet]的文章
[Dhiman, Harsh S.]的文章
[Deb, Dipankar]的文章
必应学术
必应学术中相似的文章
[Redekar, Abhijeet]的文章
[Dhiman, Harsh S.]的文章
[Deb, Dipankar]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。