Arid
DOI10.1016/j.agwat.2024.108857
Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions
Sharafi, Saeed; Nahvinia, Mohammad Javad
通讯作者Sharafi, S
来源期刊AGRICULTURAL WATER MANAGEMENT
ISSN0378-3774
EISSN1873-2283
出版年2024
卷号299
英文摘要Climate variability plays a pivotal role in rainfed agriculture, especially within arid regions. Analyzing these fluctuations across diverse climatic conditions establishes a foundation for subsequent investigations. In Iran, the FAO 56 aridity index categorizes the nation into very dry, dry, semidry, and humid climate classifications. This study aimed to explore equations derived from multiple linear regression (MLR) and the disparities between predicted and observed yields of rainfed wheat and barley across Iran 's varying climates. Meteorological data, encompassing rainfall (R), mean temperature (T mean ), solar radiation (S), and wind speed (U 2 ), were compiled from 44 synoptic stations spanning 1981 -2020. These data constituted inputs for the MLR models employed to simulate rainfed wheat and barley yields. The Global Performance Indicator (GPI), a 5 -point statistical criteria index, was utilized to assess MLR model performance. The findings unveiled superior MLR model performance in dry climates (R 2 =0.84 for wheat and R 2 =0.9 for barley) compared to humid climates (R 2 =0.69 for wheat and R 2 =0.66 for barley), evidenced by lower statistical error criteria values. Moreover, across all climates, the MLR models exhibited more accurate predictions for rainfed wheat yield (GPI =1559.3) in contrast to rainfed barley (GPI =1536). In conclusion, this study sheds light on the notable role of climate in rainfed agriculture, showcasing the efficacy of MLR models in predicting yields across varying climatic contexts.
英文关键词Agriculture Climate changes Correlation Rainfed farming Yield gap
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:001252956200001
WOS关键词SOLAR-RADIATION MODELS ; CLIMATE-CHANGE IMPACTS ; VARIABILITY ; PERFORMANCE ; VALIDATION ; RESISTANCE ; REGRESSION ; PROVINCE ; SYSTEMS ; DEMAND
WOS类目Agronomy ; Water Resources
WOS研究方向Agriculture ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/402674
推荐引用方式
GB/T 7714
Sharafi, Saeed,Nahvinia, Mohammad Javad. Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions[J],2024,299.
APA Sharafi, Saeed,&Nahvinia, Mohammad Javad.(2024).Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions.AGRICULTURAL WATER MANAGEMENT,299.
MLA Sharafi, Saeed,et al."Sustainability insights: Enhancing rainfed wheat and barley yield prediction in arid regions".AGRICULTURAL WATER MANAGEMENT 299(2024).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Sharafi, Saeed]的文章
[Nahvinia, Mohammad Javad]的文章
百度学术
百度学术中相似的文章
[Sharafi, Saeed]的文章
[Nahvinia, Mohammad Javad]的文章
必应学术
必应学术中相似的文章
[Sharafi, Saeed]的文章
[Nahvinia, Mohammad Javad]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。