Arid
DOI10.3390/w15101876
Water Quality Index Estimations Using Machine Learning Algorithms: A Case Study of Yazd-Ardakan Plain, Iran
Goodarzi, Mohammad Reza; Niknam, Amir Reza R.; Barzkar, Ali; Niazkar, Majid; Mehrjerdi, Yahia Zare; Abedi, Mohammad Javad; Pour, Mahnaz Heydari
通讯作者Goodarzi, MR
来源期刊WATER
EISSN2073-4441
出版年2023
卷号15期号:10
英文摘要Excessive population growth and high water demands have significantly increased water extractions from deep and semi-deep wells in the arid regions of Iran. This has negatively affected water quality in different areas. The Water Quality Index (WQI) is a suitable tool to assess such impacts. This study used WQI and the fuzzy hierarchical analysis process of the water quality index (FAHP-WQI) to investigate the water quality status of 96 deep agricultural wells in the Yazd-Ardakan Plain, Iran. Calculating the WQI is time-consuming, but estimating WQI is inevitable for water resources management. For this purpose, three Machine Learning (ML) algorithms, namely, Gene Expression Programming (GEP), M5P Model tree, and Multivariate Adaptive Regression Splines (MARS), were employed to predict WQI. Using Wilcox and Schoeller charts, water quality was also investigated for agricultural and drinking purposes. The results demonstrated that 75% and 33% of the study area have good quality, based on the WQI and FAHP-WQI methods, respectively. According to the results of the Wilcox chart, around 37.25% of the wells are in the C3S2 and C3S1 classes, which indicate poor water quality. Schoeller's diagram placed the drinking water quality of the Yazd-Ardakan plain in acceptable, inadequate, and inappropriate categories. Afterwards, WQI, predicted by means of ML models, were compared on several statistical criteria. Finally, the comparative analysis revealed that MARS is slightly more accurate than the M5P model for estimating WQI.
英文关键词water quality index machine learning fuzzy-AHP gene expression programming M5P MARS
类型Article
语种英语
开放获取类型gold
收录类别SCI-E
WOS记录号WOS:000997802100001
WOS关键词GROUNDWATER QUALITY ; FUZZY ; DRINKING ; CHEMISTRY ; RIVER ; AREA ; MARS
WOS类目Environmental Sciences ; Water Resources
WOS研究方向Environmental Sciences & Ecology ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/399028
推荐引用方式
GB/T 7714
Goodarzi, Mohammad Reza,Niknam, Amir Reza R.,Barzkar, Ali,et al. Water Quality Index Estimations Using Machine Learning Algorithms: A Case Study of Yazd-Ardakan Plain, Iran[J],2023,15(10).
APA Goodarzi, Mohammad Reza.,Niknam, Amir Reza R..,Barzkar, Ali.,Niazkar, Majid.,Mehrjerdi, Yahia Zare.,...&Pour, Mahnaz Heydari.(2023).Water Quality Index Estimations Using Machine Learning Algorithms: A Case Study of Yazd-Ardakan Plain, Iran.WATER,15(10).
MLA Goodarzi, Mohammad Reza,et al."Water Quality Index Estimations Using Machine Learning Algorithms: A Case Study of Yazd-Ardakan Plain, Iran".WATER 15.10(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Goodarzi, Mohammad Reza]的文章
[Niknam, Amir Reza R.]的文章
[Barzkar, Ali]的文章
百度学术
百度学术中相似的文章
[Goodarzi, Mohammad Reza]的文章
[Niknam, Amir Reza R.]的文章
[Barzkar, Ali]的文章
必应学术
必应学术中相似的文章
[Goodarzi, Mohammad Reza]的文章
[Niknam, Amir Reza R.]的文章
[Barzkar, Ali]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。