Arid
DOI10.3390/su15097452
Monitoring Soil Salinity Using Machine Learning and the Polarimetric Scattering Features of PALSAR-2 Data
Zhao, Jing; Nurmemet, Ilyas; Muhetaer, Nuerbiye; Xiao, Sentian; Abulaiti, Adilai
通讯作者Nurmemet, I
来源期刊SUSTAINABILITY
EISSN2071-1050
出版年2023
卷号15期号:9
英文摘要Soil salinization is one of the major problems affecting arid regions, restricting the sustainable development of agriculture and ecological protection in the Keriya Oasis in Xinjiang, China. This study aims to capture the distribution of soil salinity with polarimetric parameters and various classification methods based on the Advanced Land Observing Satellite-2(ALOS-2) with the Phased Array Type L-Band Synthetic Aperture Radar-2 (PALSAR-2) and Landsat-8 OLI (OLI) images of the Keriya Oasis. Eleven polarization target decomposition methods were employed to extract the polarimetric scattering features. Furthermore, the features with the highest signal-to-noise ratio value were used and combined with the OLI optimal components to form a comprehensive dataset named OLI + PALSAR2. Next, two machine learning algorithms, Support Vector Machine (SVM) and Random Forest, were applied to classify the surface characteristics. The results showed that better outcomes were achieved with the SVM classifier for OLI + PALSAR2 data, with the overall accuracy, Kappa coefficient, and F1 scores being 91.57%, 0.89, and 0.94, respectively. The results indicate the potential of using PALSAR-2 data coupled with the classification in machine learning to monitor different degrees of soil salinity in the Keriya Oasis.
英文关键词soil salinization polarized feature component SVM classification oasis in arid areas ALOS PALSAR-2
类型Article
语种英语
开放获取类型gold
收录类别SCI-E ; SSCI
WOS记录号WOS:000988153500001
WOS关键词TARGET DECOMPOSITION-THEOREMS ; SAR DATA ; RADARSAT-2 ; INVERSION ; MODEL
WOS类目Green & Sustainable Science & Technology ; Environmental Sciences ; Environmental Studies
WOS研究方向Science & Technology - Other Topics ; Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/398790
推荐引用方式
GB/T 7714
Zhao, Jing,Nurmemet, Ilyas,Muhetaer, Nuerbiye,et al. Monitoring Soil Salinity Using Machine Learning and the Polarimetric Scattering Features of PALSAR-2 Data[J],2023,15(9).
APA Zhao, Jing,Nurmemet, Ilyas,Muhetaer, Nuerbiye,Xiao, Sentian,&Abulaiti, Adilai.(2023).Monitoring Soil Salinity Using Machine Learning and the Polarimetric Scattering Features of PALSAR-2 Data.SUSTAINABILITY,15(9).
MLA Zhao, Jing,et al."Monitoring Soil Salinity Using Machine Learning and the Polarimetric Scattering Features of PALSAR-2 Data".SUSTAINABILITY 15.9(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Jing]的文章
[Nurmemet, Ilyas]的文章
[Muhetaer, Nuerbiye]的文章
百度学术
百度学术中相似的文章
[Zhao, Jing]的文章
[Nurmemet, Ilyas]的文章
[Muhetaer, Nuerbiye]的文章
必应学术
必应学术中相似的文章
[Zhao, Jing]的文章
[Nurmemet, Ilyas]的文章
[Muhetaer, Nuerbiye]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。