Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.36783/18069657rbcs20220124 |
Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region | |
Tonucci, Rafael Goncalves; Vogado, Renato Falconeres; Silva, Rodrigo Dias; Pompeu, Roberto Claudio Fernandes Franco; Oda-Souza, Melissa; Souza, Henrique Antunes de | |
通讯作者 | Vogado, RF |
来源期刊 | REVISTA BRASILEIRA DE CIENCIA DO SOLO
![]() |
ISSN | 0100-0683 |
EISSN | 1806-9657 |
出版年 | 2023 |
卷号 | 47 |
英文摘要 | Agroforestry systems have the potential to increase soil organic matter, with effects on soil carbon and nitrogen contents, but information on the application of these systems in semi-arid regions is still scarce. This study aimed to analyze soil carbon and nitrogen stocks in the conversion of native forest from the Caatinga Biome into integrated agriculture systems in the Brazilian semi-arid region. We evaluated the following management systems in the Haplic Inceptisol (Cambissolo Haplico eutrofico): (1) Intercropping area, cultivated with corn and Massai grass; (2) Caatinga (natural vegetation); (3) AFS10: agroforestry system with native woody forest rows occupying 33 % and agriculture occupying 66 % of the total area; and (4) AFS20: agroforestry system presenting inverse proportions of AFS10. The agroforestry systems were intercropped with sorghum or millet, pigeon pea and Massai grass. We collected disturbed and undisturbed soil samples at the layers of 0.00-0.10; 0.10-0.20; 0.20-0.40, 0.40-0.60 and 0.60-1.00 m for analysis of carbon (SOC), nitrogen (N), soil bulk density, and calculation of SOC and N stocks and C/N ratio, two years after the conversion of natural vegetation to the agricultural area (intercropping) and agroforestry system (AFS10 and AFS20). We applied principal component and cluster analysis to explore the data, and confidence interval to compare the means of accumulated SOC and N stocks up to 1 m soil depth. No differences exist for the properties analysed in superficial layers (0.00-0.10 and 0.10-0.20 m), regardless of land-use systems. AFS20 increase the SOC content and, consequently, SOC stock, in subsurface layers; on the other hand, intercropping increases N content and N stock. AFS20 presented higher accumulated SOC stocks up to 1.00 m (114.97 Mg ha-1). Agroforestry systems management is an alternative for increasing carbon sequestration under the conversion from Caatinga to agricultural areas. |
英文关键词 | soil quality soil organic matter climate change mitigations integrated systems |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:000953861100001 |
WOS关键词 | ORGANIC-CARBON ; GRASSLAND MANAGEMENT ; PIAUI STATE ; CAATINGA ; DECOMPOSITION ; PASTURE |
WOS类目 | Soil Science |
WOS研究方向 | Agriculture |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/398377 |
推荐引用方式 GB/T 7714 | Tonucci, Rafael Goncalves,Vogado, Renato Falconeres,Silva, Rodrigo Dias,et al. Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region[J],2023,47. |
APA | Tonucci, Rafael Goncalves,Vogado, Renato Falconeres,Silva, Rodrigo Dias,Pompeu, Roberto Claudio Fernandes Franco,Oda-Souza, Melissa,&Souza, Henrique Antunes de.(2023).Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region.REVISTA BRASILEIRA DE CIENCIA DO SOLO,47. |
MLA | Tonucci, Rafael Goncalves,et al."Agroforestry system improves soil carbon and nitrogen stocks in depth after land-use changes in the Brazilian semi-arid region".REVISTA BRASILEIRA DE CIENCIA DO SOLO 47(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。