Knowledge Resource Center for Ecological Environment in Arid Area
DOI | 10.3390/rs15133344 |
Aboveground Biomass Prediction of Arid Shrub-Dominated Community Based on Airborne LiDAR through Parametric and Nonparametric Methods | |
Xie, Dongbo; Huang, Hongchao; Feng, Linyan; Sharma, Ram P.; Chen, Qiao; Liu, Qingwang; Fu, Liyong | |
通讯作者 | Fu, LY |
来源期刊 | REMOTE SENSING
![]() |
EISSN | 2072-4292 |
出版年 | 2023 |
卷号 | 15期号:13 |
英文摘要 | Aboveground biomass (AGB) of shrub communities in the desert is a basic quantitative characteristic of the desert ecosystem and an important index to measure ecosystem productivity and monitor desertification. An accurate and efficient method of predicting the AGB of a shrub community is essential for studying the spatial patterns and ecological functions of the desert region. Even though there are several entries in the literature on the AGB prediction of desert shrub communities using remote sensing data, the applicability and accuracy of airborne LiDAR data and prediction methods have not been well studied. We first extracted the elevation, density and intensity variables based on the airborne LiDAR, and then sample plot-level AGB prediction models were constructed using the parametric regression (nonlinear regression) and nonparametric methods (Random Forest, Support Vector Machine, K-Nearest Neighbor, Gradient Boosting Machine, and Multivariate adaptive regression splines). We evaluated accuracies of all the AGB prediction models we developed based on the fit statistics. Results showed that: (1) the elevation, density and intensity variables obtained from LiDAR point cloud data effectively predicted the AGB of the desert shrub community at a sample plot level, (2) the kappa coefficient of nonlinear mixed-effects (NLME) model obtained was 0.6977 with an improvement by 13% due to the random effects included into the model, and (3) the nonparametric model, such as Support Vector Machine showed the best fit statistics (R-2 = 0.8992), which is 28% higher than the NLME-model, and effectively reduced the heteroscedasticity. The AGB prediction model presented in this paper, which is based on the airborne LiDAR data and machine learning algorithm, will provide a valuable tool to the managers and researchers for evaluating desert ecosystem productivity and monitoring desertification. |
英文关键词 | aboveground biomass LiDAR shrub community desert nonparametric methods |
类型 | Article |
语种 | 英语 |
开放获取类型 | gold |
收录类别 | SCI-E |
WOS记录号 | WOS:001028150200001 |
WOS关键词 | SEMIARID ECOSYSTEMS ; CANOPY COVER ; LEAF-AREA ; HEIGHT ; CLASSIFICATION ; PLANTATIONS ; VARIABILITY ; ALGORITHMS ; GRASSLAND ; NORTHERN |
WOS类目 | Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS研究方向 | Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology |
资源类型 | 期刊论文 |
条目标识符 | http://119.78.100.177/qdio/handle/2XILL650/398298 |
推荐引用方式 GB/T 7714 | Xie, Dongbo,Huang, Hongchao,Feng, Linyan,et al. Aboveground Biomass Prediction of Arid Shrub-Dominated Community Based on Airborne LiDAR through Parametric and Nonparametric Methods[J],2023,15(13). |
APA | Xie, Dongbo.,Huang, Hongchao.,Feng, Linyan.,Sharma, Ram P..,Chen, Qiao.,...&Fu, Liyong.(2023).Aboveground Biomass Prediction of Arid Shrub-Dominated Community Based on Airborne LiDAR through Parametric and Nonparametric Methods.REMOTE SENSING,15(13). |
MLA | Xie, Dongbo,et al."Aboveground Biomass Prediction of Arid Shrub-Dominated Community Based on Airborne LiDAR through Parametric and Nonparametric Methods".REMOTE SENSING 15.13(2023). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。