Arid
DOI10.1016/j.pce.2023.103451
An improved adaptive neuro-fuzzy inference system for hydrological drought prediction in Algeria
Achite, Mohammed; Gul, Enes; Elshaboury, Nehal; Jehanzaib, Muhammad; Mohammadi, Babak; Mehr, Ali Danandeh
通讯作者Mohammadi, B
来源期刊PHYSICS AND CHEMISTRY OF THE EARTH
ISSN1474-7065
EISSN1873-5193
出版年2023
卷号131
英文摘要Drought has negative impacts on water resources, food security, soil degradation, desertification and agricultural productivity. The meteorological and hydrological droughts prediction using standardized precipitation/runoff indices (SPI/SRI) is crucial for effective water resource management. In this study, we suggest ANFISWCA, an adaptive neuro-fuzzy inference system (ANFIS) optimized by the water cycle algorithm (WCA), for hydrological drought forecasting in semi-arid regions of Algeria. The new model was used to predict SRI at 3-, 6-, 9-, and 12 -month accumulation periods in the Wadi Mina basin, Algeria. The results of the model were assessed using four criteria; determination coefficient, mean absolute error, variance accounted for, and root mean square error, and compared with those of the standalone ANFIS model. The findings suggested that throughout the testing phase at all the sub-basins, the proposed hybrid model outperformed the conventional model for estimating drought. This study indicated that the WCA algorithm enhanced the ANFIS model's drought forecasting accuracy. The pro-posed model could be employed for forecasting drought at multi-timescales, deciding on remedial strategies for dealing with drought at study stations, and aiding in sustainable water resources management.
英文关键词Hydrological drought Hybrid model ANFIS Water cycle algorithm semi -arid regions
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:001052900300001
WOS关键词ALGORITHM ; WAVELET ; INDEX ; BOOTSTRAP ; FRAMEWORK ; MODELS ; FLOODS ; ANFIS ; SCALE ; SPI
WOS类目Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences ; Water Resources
WOS研究方向Geology ; Meteorology & Atmospheric Sciences ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/398003
推荐引用方式
GB/T 7714
Achite, Mohammed,Gul, Enes,Elshaboury, Nehal,et al. An improved adaptive neuro-fuzzy inference system for hydrological drought prediction in Algeria[J],2023,131.
APA Achite, Mohammed,Gul, Enes,Elshaboury, Nehal,Jehanzaib, Muhammad,Mohammadi, Babak,&Mehr, Ali Danandeh.(2023).An improved adaptive neuro-fuzzy inference system for hydrological drought prediction in Algeria.PHYSICS AND CHEMISTRY OF THE EARTH,131.
MLA Achite, Mohammed,et al."An improved adaptive neuro-fuzzy inference system for hydrological drought prediction in Algeria".PHYSICS AND CHEMISTRY OF THE EARTH 131(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Achite, Mohammed]的文章
[Gul, Enes]的文章
[Elshaboury, Nehal]的文章
百度学术
百度学术中相似的文章
[Achite, Mohammed]的文章
[Gul, Enes]的文章
[Elshaboury, Nehal]的文章
必应学术
必应学术中相似的文章
[Achite, Mohammed]的文章
[Gul, Enes]的文章
[Elshaboury, Nehal]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。