Arid
DOI10.1016/j.pce.2023.103400
Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas
Kaplan, Gordana; Gasparovic, Mateo; Alqasemi, Abduldaem S.; Aldhaheri, Alya; Abuelgasim, Abdelgadir; Ibrahim, Majed
通讯作者Alqasemi, AS
来源期刊PHYSICS AND CHEMISTRY OF THE EARTH
ISSN1474-7065
EISSN1873-5193
出版年2023
卷号130
英文摘要We are experiencing a considerable increase in soil salinity as a result of the influence of climate change or environmental contamination produced by excessive industry and agriculture. To be able to cope with this issue, reliable and up-to-date soil salinity measurements are required. The use of remote sensing data allows for faster and more efficient soil salinity mapping. This paper investigates several Machine Learning approaches and modeling methodologies for predicting soil salinity in hyper-arid environments using Sentinel-2 satellite imag-ery. Thus, 393 soil samples collected and used for modeling and testing in the study area, United Arab Emirates. Also, the paper benefits from open-source data and programs, such as Google Earth Engine and Weka. Different modeling strategies have been applied over the data. The results of the modeling show a strong correlation (0.84) with the test results. This study also shows interesting findings that will be examined further in future studies at other sites. As machine learning methods are evolving on a daily basis, new approaches needs to be considered in future studies for the demands of more precise modeling and mapping of soil salinity.
英文关键词Soil salinity Google earth engine Sentinel-2 Remote sensing Machine learning Modeling
类型Article
语种英语
收录类别SCI-E
WOS记录号WOS:000984903900001
WOS关键词LANDSAT 8 ; XINJIANG ; PERFORMANCE ; RESOLUTION ; REGION
WOS类目Geosciences, Multidisciplinary ; Meteorology & Atmospheric Sciences ; Water Resources
WOS研究方向Geology ; Meteorology & Atmospheric Sciences ; Water Resources
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/398002
推荐引用方式
GB/T 7714
Kaplan, Gordana,Gasparovic, Mateo,Alqasemi, Abduldaem S.,et al. Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas[J],2023,130.
APA Kaplan, Gordana,Gasparovic, Mateo,Alqasemi, Abduldaem S.,Aldhaheri, Alya,Abuelgasim, Abdelgadir,&Ibrahim, Majed.(2023).Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas.PHYSICS AND CHEMISTRY OF THE EARTH,130.
MLA Kaplan, Gordana,et al."Soil salinity prediction using Machine Learning and Sentinel-2 Remote Sensing Data in Hyper-Arid areas".PHYSICS AND CHEMISTRY OF THE EARTH 130(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kaplan, Gordana]的文章
[Gasparovic, Mateo]的文章
[Alqasemi, Abduldaem S.]的文章
百度学术
百度学术中相似的文章
[Kaplan, Gordana]的文章
[Gasparovic, Mateo]的文章
[Alqasemi, Abduldaem S.]的文章
必应学术
必应学术中相似的文章
[Kaplan, Gordana]的文章
[Gasparovic, Mateo]的文章
[Alqasemi, Abduldaem S.]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。