Arid
DOI10.1016/j.media.2022.102723
Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models
Pombo, Guilherme; Gray, Robert; Cardoso, M. Jorge; Ourselin, Sebastien; Rees, Geraint; Ashburner, John; Nachev, Parashkev
通讯作者Pombo, G
来源期刊MEDICAL IMAGE ANALYSIS
ISSN1361-8415
EISSN1361-8423
出版年2023
卷号84
英文摘要We describe CounterSynth, a conditional generative model of diffeomorphic deformations that induce label driven, biologically plausible changes in volumetric brain images. The model is intended to synthesise counterfactual training data augmentations for downstream discriminative modelling tasks where fidelity is limited by data imbalance, distributional instability, confounding, or underspecification, and exhibits inequitable performance across distinct subpopulations.Focusing on demographic attributes, we evaluate the quality of synthesised counterfactuals with voxelbased morphometry, classification and regression of the conditioning attributes, and the Frechet inception distance. Examining downstream discriminative performance in the context of engineered demographic imbalance and confounding, we use UK Biobank and OASIS magnetic resonance imaging data to benchmark CounterSynth augmentation against current solutions to these problems. We achieve state-of-the-art improvements, both in overall fidelity and equity. The source code for CounterSynth is available at https: //github.com/guilherme-pombo/CounterSynth.
英文关键词Counterfactuals Deep generative models Diffeomorphic deformations Discriminative models Data augmentation Fairness Equity Brain imaging
类型Article
语种英语
开放获取类型Green Published, hybrid, Green Submitted
收录类别SCI-E
WOS记录号WOS:000912445400001
WOS关键词VOXEL-BASED MORPHOMETRY ; ALZHEIMERS-DISEASE ; SEX-DIFFERENCES ; SEGMENTATION ; REGISTRATION
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS研究方向Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/397821
推荐引用方式
GB/T 7714
Pombo, Guilherme,Gray, Robert,Cardoso, M. Jorge,et al. Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models[J],2023,84.
APA Pombo, Guilherme.,Gray, Robert.,Cardoso, M. Jorge.,Ourselin, Sebastien.,Rees, Geraint.,...&Nachev, Parashkev.(2023).Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models.MEDICAL IMAGE ANALYSIS,84.
MLA Pombo, Guilherme,et al."Equitable modelling of brain imaging by counterfactual augmentation with morphologically constrained 3D deep generative models".MEDICAL IMAGE ANALYSIS 84(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Pombo, Guilherme]的文章
[Gray, Robert]的文章
[Cardoso, M. Jorge]的文章
百度学术
百度学术中相似的文章
[Pombo, Guilherme]的文章
[Gray, Robert]的文章
[Cardoso, M. Jorge]的文章
必应学术
必应学术中相似的文章
[Pombo, Guilherme]的文章
[Gray, Robert]的文章
[Cardoso, M. Jorge]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。