Arid
DOI10.3390/land12040890
Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya
Were, Kennedy; Kebeney, Syphyline; Churu, Harrison; Mutio, James Mumo; Njoroge, Ruth; Mugaa, Denis; Alkamoi, Boniface; Ng'etich, Wilson; Singh, Bal Ram
通讯作者Were, K
来源期刊LAND
EISSN2073-445X
出版年2023
卷号12期号:4
英文摘要This study aimed at (i) developing, evaluating and comparing the performance of support vector machines (SVM), boosted regression trees (BRT), random forest (RF) and logistic regression (LR) models in mapping gully erosion susceptibility, and (ii) determining the important gully erosion conditioning factors (GECFs) in a Kenyan semi-arid landscape. A total of 431 geo-referenced gully erosion points were gathered through a field survey and visual interpretation of high-resolution satellite imagery on Google Earth, while 24 raster-based GECFs were retrieved from the existing geodatabases for spatial modeling and prediction. The resultant models exhibited excellent performance, although the machine learners outperformed the benchmark LR technique. Specifically, the RF and BRT models returned the highest area under the receiver operating characteristic curve (AUC = 0.89 each) and overall accuracy (OA = 80.2%; 79.7%, respectively), followed by the SVM and LR models (AUC = 0.86; 0.85 & OA = 79.1%; 79.6%, respectively). In addition, the importance of the GECFs varied among the models. The best-performing RF model ranked the distance to a stream, drainage density and valley depth as the three most important GECFs in the region. The output gully erosion susceptibility maps can support the efficient allocation of resources for sustainable land management in the area.
英文关键词soil erosion land degradation sustainable land management landscape restoration spatial prediction machine learning
类型Article
语种英语
开放获取类型gold
收录类别SSCI
WOS记录号WOS:000979000200001
WOS关键词LANDSLIDE SUSCEPTIBILITY ; MODELS ; REGRESSION ; PERFORMANCE ; LAND ; TREE
WOS类目Environmental Studies
WOS研究方向Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/397650
推荐引用方式
GB/T 7714
Were, Kennedy,Kebeney, Syphyline,Churu, Harrison,et al. Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya[J],2023,12(4).
APA Were, Kennedy.,Kebeney, Syphyline.,Churu, Harrison.,Mutio, James Mumo.,Njoroge, Ruth.,...&Singh, Bal Ram.(2023).Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya.LAND,12(4).
MLA Were, Kennedy,et al."Spatial Prediction and Mapping of Gully Erosion Susceptibility Using Machine Learning Techniques in a Degraded Semi-Arid Region of Kenya".LAND 12.4(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Were, Kennedy]的文章
[Kebeney, Syphyline]的文章
[Churu, Harrison]的文章
百度学术
百度学术中相似的文章
[Were, Kennedy]的文章
[Kebeney, Syphyline]的文章
[Churu, Harrison]的文章
必应学术
必应学术中相似的文章
[Were, Kennedy]的文章
[Kebeney, Syphyline]的文章
[Churu, Harrison]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。