Arid
DOI10.1016/j.jaridenv.2023.104947
Assessment of soil CO2 and NO fluxes in a semi-arid region using machine learning approaches
Mirzaei, Morad; Caballero-Calvo, Andres; Anari, Manouchehr Gorji; -Pines, Eugenio Diaz; Saronjic, Nermina; Mohammed, Safwan; Szabo, Szilard; Mousavi, Seyed Mohammad Nasir
通讯作者Mirzaei, M
来源期刊JOURNAL OF ARID ENVIRONMENTS
ISSN0140-1963
EISSN1095-922X
出版年2023
卷号211
英文摘要Agricultural lands are sources and sinks of greenhouse gases (GHGs). The identification of the main drivers affecting GHGs is crucial for planning sustainable agronomic practices and mitigating global warming potential. The main aim of this research was to evaluate the impact of environmental drivers (soil temperature and waterfilled pore space, WFPS) and crop residue rates on CO2, NO, and NOx fluxes under conventional tillage (CT) and no-tillage (NT) systems. The accuracy of Random Forest Regression (RFR), Multiple Adaptive Regression Splines (MARS), and General Linear Models (GLM) in predicting CO2, NO, and NOx fluxes were also assessed. In both CT and NT systems, CO2, NO, and NOx fluxes decreased with increasing WFPS. Increasing temperature resulted in higher CO2 emissions and lower NO and NOx emissions. Higher residue rates resulted in significant increases in CO2 emission, whereas the NO and NOx emissions increased by decreasing the ratio of residue. For CO2 prediction, the RFR provided the largest R2 with the observed data. For NO-N and NOx-N prediction, RFR was the most efficient algorithm, but NO-N can be predicted with better accuracy. The output of this research highlights the importance of agronomic practices for climate mitigation, along with the possibility of using RFR to predict GHGs fluxes.
英文关键词Agroecosystems Classical regression Climate change Machine learning Iran
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E
WOS记录号WOS:000963237400001
WOS关键词GREENHOUSE-GAS EMISSIONS ; NITRIC-OXIDE EMISSIONS ; N2O EMISSIONS ; LAND-USE ; TILLAGE ; CARBON ; FOREST ; MODEL ; MINERALIZATION ; IMPLEMENTATION
WOS类目Ecology ; Environmental Sciences
WOS研究方向Environmental Sciences & Ecology
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/397143
推荐引用方式
GB/T 7714
Mirzaei, Morad,Caballero-Calvo, Andres,Anari, Manouchehr Gorji,et al. Assessment of soil CO2 and NO fluxes in a semi-arid region using machine learning approaches[J],2023,211.
APA Mirzaei, Morad.,Caballero-Calvo, Andres.,Anari, Manouchehr Gorji.,-Pines, Eugenio Diaz.,Saronjic, Nermina.,...&Mousavi, Seyed Mohammad Nasir.(2023).Assessment of soil CO2 and NO fluxes in a semi-arid region using machine learning approaches.JOURNAL OF ARID ENVIRONMENTS,211.
MLA Mirzaei, Morad,et al."Assessment of soil CO2 and NO fluxes in a semi-arid region using machine learning approaches".JOURNAL OF ARID ENVIRONMENTS 211(2023).
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Mirzaei, Morad]的文章
[Caballero-Calvo, Andres]的文章
[Anari, Manouchehr Gorji]的文章
百度学术
百度学术中相似的文章
[Mirzaei, Morad]的文章
[Caballero-Calvo, Andres]的文章
[Anari, Manouchehr Gorji]的文章
必应学术
必应学术中相似的文章
[Mirzaei, Morad]的文章
[Caballero-Calvo, Andres]的文章
[Anari, Manouchehr Gorji]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。