Arid
DOI10.1080/13658816.2023.2266497
Understanding and extending the geographical detector model under a linear regression framework
Zhang, Hang; Dong, Guanpeng; Wang, Jinfeng; Zhang, Tong-Lin; Meng, Xiaoyu; Yang, Dongyang; Liu, Yong; Lu, Binbin
通讯作者Dong, GP
来源期刊INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
ISSN1365-8816
EISSN1362-3087
出版年2023
卷号37期号:11页码:2437-2453
英文摘要The Geographical Detector Model (GDM) is a popular statistical toolkit for geographical attribution analysis. Despite the striking resemblance of the q-statistic in GDM to the R-squared in linear regression models, their explicit connection has not yet been established. This study proves that the q-statistic reduces into the R-squared under a linear regression framework. Under linear regression and moderate-to-strong spatial autocorrelation, Monte Carlo simulation results show that the GDM tends to underestimate the importance of variables. In addition, an almost perfect power law relationship is present between the percentage bias and the degree of the spatial autocorrelations, indicating the presence of fast uplifting bias in response to increasing levels of spatial autocorrelations. We propose an integrated approach for variable importance quantification by bringing together the spatial econometrics model and the game theory based-Shapley value method. By applying our proposed methodology to a case study of land desertification in African, it is found human activity tends to affect land desertification both directly and indirectly. However, such effects appear to be underestimated or undistinguished in the classic GDM.
英文关键词Spatial autocorrelation geographical detector model variable importance decomposition
类型Article
语种英语
开放获取类型hybrid
收录类别SCI-E ; SSCI
WOS记录号WOS:001078067200001
WOS关键词DESERTIFICATION ; SATISFACTION
WOS类目Computer Science, Information Systems ; Geography ; Geography, Physical ; Information Science & Library Science
WOS研究方向Computer Science ; Geography ; Physical Geography ; Information Science & Library Science
资源类型期刊论文
条目标识符http://119.78.100.177/qdio/handle/2XILL650/397001
推荐引用方式
GB/T 7714
Zhang, Hang,Dong, Guanpeng,Wang, Jinfeng,et al. Understanding and extending the geographical detector model under a linear regression framework[J],2023,37(11):2437-2453.
APA Zhang, Hang.,Dong, Guanpeng.,Wang, Jinfeng.,Zhang, Tong-Lin.,Meng, Xiaoyu.,...&Lu, Binbin.(2023).Understanding and extending the geographical detector model under a linear regression framework.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,37(11),2437-2453.
MLA Zhang, Hang,et al."Understanding and extending the geographical detector model under a linear regression framework".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 37.11(2023):2437-2453.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Hang]的文章
[Dong, Guanpeng]的文章
[Wang, Jinfeng]的文章
百度学术
百度学术中相似的文章
[Zhang, Hang]的文章
[Dong, Guanpeng]的文章
[Wang, Jinfeng]的文章
必应学术
必应学术中相似的文章
[Zhang, Hang]的文章
[Dong, Guanpeng]的文章
[Wang, Jinfeng]的文章
相关权益政策
暂无数据
收藏/分享

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。